The Potency of Alkaloid Derivates as Anti-Breast Cancer Candidates: In Silico Study

Sedin Renadi, Anindita Tri Kusuma Pratita, Richa Mardianingrum, Ruswanto Ruswanto

Abstract


Breast cancer is the most frequent malignancy in women worldwide. One of the target receptors for the treatment of breast cancer are estrogen, progesterone, and HER2 receptors. An alternative treatment using natural ingredients has been developed, one of which is alkaloid compounds. This study aims to determine the activity of alkaloid compounds as anti-breast cancer agents through an in-silico method. Virtual screening (AutoDock Vina), molecular docking (AutoDock Tools), molecular dynamics (Desmond), scanning Lipinski's rule of five, as well as pharmacokinetic and toxicity parameters, were performed. The results of virtual screening, molecular docking, and molecular dynamics show that the compounds daurisoline, solasodine, and sambutoxin have stable interactions with the HER2 receptor, with the lowest values of RMSD (Root Mean Square Deviation) and RMSF (Root Mean Square Fluctuation) compared to other compounds. Based on the results of the study conducted, it was shown that daurisoline, solasodine, and sambutoxin were predicted to be used as anti-HER2 candidates for the treatment of breast cancer.

Keywords


alkaloids; molecular dynamics; breast cancer; molecular docking; virtual screening

References


Carugo, O., Djinovic Carugo, K. (2013). Half a century of Ramachandran plots. Acta Crystallographica Section D: Biological Crystallography, 69(8), 1333–1341. https://doi.org/10.1107/S090744491301158X

Colovos, C., Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916

Devarajan, P. V., Dandekar, P., D’Souza, A. A. (2019). Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis (39 ed.). Springer. https://doi.org/https://doi.org/10.1007/978-3-030-29168-6

Dey, P., Kundu, A., Chakraborty, H. J., Kar, B., Choi, W. S., Lee, B. M., Bhakta, T., Atanasov, A. G., Kim, H. S. (2019). Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. International Journal of Cancer, 145(7), 1731–1744. https://doi.org/10.1002/ijc.31965

Dubach, V. R. A., Guskov, A. (2020). The Resolution in X-ray Crystallography and Single-Particle Cryogenic Electron Microscopy. Crystals, 10(580), 1–13. https://doi.org/10.3390/cryst10070580

Dutta, B., Banerjee, A., Chakraborty, P., Bandopadhyay, R. (2018). In silico studies on bacterial xylanase enzyme: Structural and functional insight. Journal of Genetic Engineering and Biotechnology, 16(2), 749–756. https://doi.org/10.1016/j.jgeb.2018.05.003

Florová, P., Sklenovský, P., Banáš, P., Otyepka, M. (2010). Explicit water models affect the specific solvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact. Journal of Chemical Theory and Computation, 6(11), 3569–3579. https://doi.org/10.1021/ct1003687

Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. nature protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051

Halgren, T. A. (1999). MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. Journal of Computational Chemistry, 20(7), 730–748. https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<730::AID-JCC8>3.0.CO;2-T

Hollingsworth, S. A., Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011

Huang, K., Chen, Q., Deng, L., Zou, Q., Min, S. (2022). Daurisoline Inhibiting Tumor Angiogenesis and Epithelial-Mesenchymal Transition in Bladder Cancer by Mediating HAKAI Protein Stability. Iranian Journal of Pharmaceutical Research, 21(1), 1–14. https://doi.org/10.5812/ijpr-129798

Islam, M. K., Barman, A. C., Qais, N. (2020). Anti-Cancer Constituents from Plants : A Brief Review. J. Pharm, 19(1), 83–96. https://doi.org/https://doi.org/10.3329/dujps.v19i1.47823

Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S., Shekhar, V. (2012). Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC bioinformatics, 13 Suppl 1(Suppl 17). https://doi.org/10.1186/1471-2105-13-S17-S7

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869

Kar, S., Leszczynski, J. (2020). Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opinion on Drug Discovery, 15(12), 1473–1487. https://doi.org/10.1080/17460441.2020.1798926

Laskowski, R. A., Hutchinson, E. G., Michie, A. D., Wallace, A. C., Jones, M. L., Thornton, J. M. (1997). PDBsum: A Web-based database of summaries and analyses of all PDB structures. Trends in Biochemical Sciences, 22(12), 488–490. https://doi.org/10.1016/S0968-0004(97)01140-7

Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27(1), 129–134. https://doi.org/10.1002/pro.3289

Li, L.-N., Wang, L., Cheng, Y.-N., Cao, Z.-Q., Zhang, X.-K., Guo, X.-L. (2018). Discovery and Characterization of 4-Hydroxy-2-pyridone Derivative Sambutoxin as a Potent and Promising Anticancer Drug Candidate: Activity and Molecular Mechanism. Molecular Pharmaceutics, 15(11), 4898–4911. https://doi.org/10.1021/acs.molpharmaceut.8b00525

Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

Lu, H., Yin, D., Ye, Y., Luo, H., Geng, L., Li, H. (2009). Correlation Between Protein Sequence Similarity and X-Ray Diffraction Quality in the Protein Data Bank. 50–55.

Mardianingrum, R., Endah, S. R. N., Suhardiana, E., Ruswanto, R., Siswandono, S. (2021). Docking and molecular dynamic study of isoniazid derivatives as anti-tuberculosis drug candidate. Chemical Data Collections, 32, 100647. https://doi.org/10.1016/j.cdc.2021.100647

Mario, D., Lobo, F., Amesty, Á., Vald, C., Canerina-amaro, A., Mesa-herrera, F., Soler, K., Boto, A., Mar, R., Est, A., Lahoz, F. (2021). FLTX2 : A Novel Tamoxifen Derivative Endowed with Antiestrogenic , Fluorescent , and Photosensitizer Properties.

Maximov, P. Y., Abderrahman, B., Fanning, S. W., Sengupta, S., Fan, P., Curpan, R. F., Rincon, D. M. Q., Greenland, J. A., Rajan, S. S., Greene, G. L., Jordan, V. C. (2018). Endoxifen, 4-Hydroxytamoxifen and an Estrogenic Derivative Modulate Estrogen Receptor Complex Mediated Apoptosis in Breast Cancer. Molecular Pharmacology, 94(2), 812–822. https://doi.org/10.1124/mol.117.111385

Pires, D. E. V., Blundell, T. L., Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Pollastri, M. P. (2010). Overview on the rule of five. Current Protocols in Pharmacology, SUPPL. 49, 1–8. https://doi.org/10.1002/0471141755.ph0912s49

Qing, Z.-X., Huang, J.-L., Yang, X.-Y., Liu, J.-H., Cao, H.-L., Xiang, F., Cheng, P., Zeng, J.-G. (2017). Anticancer and Reversing Multidrug Resistance Activities of Natural Isoquinoline Alkaloids and their Structure-activity Relationship. Current Medicinal Chemistry, 25(38), 5088–5114. https://doi.org/10.2174/0929867324666170920125135

Rampogu, S., Balasubramaniyam, T., Lee, J. (2022). Biomedicine & Pharmacotherapy Phytotherapeutic applications of alkaloids in treating breast cancer. Biomedicine & Pharmacotherapy, 155(September), 113760. https://doi.org/10.1016/j.biopha.2022.113760

Raval, K., Ganatra, T. (2022). Basics , types and applications of molecular docking : A review Basics , types and applications of molecular docking : A review. March. https://doi.org/10.18231/j.ijcaap.2022.003

Research, D. E. S. (2019). Desmond Molecular Dynamics System (No. 2019–2). Maestro-Desmond Interoperability Tools, Schrödinger.

Ruswanto, Aprillia, A. Y., Hapid, P. A. (2022). Monograf Telaah Analisis Bioinformatika Turunan Alkaloid Sebagai Kandidat Terapi SARS-CoV-2. Global Aksara Pers.

Ruswanto, R., Mardianingrum, R., Yanuar, A. (2022). Computational Studies of Thiourea Derivatives as Anticancer Candidates through Inhibition of Sirtuin-1 (SIRT1). Jurnal Kimia Sains dan Aplikasi, 25(3), 87–96. https://doi.org/10.14710/jksa.25.3.87-96

Ruswanto, R., Miftah, A. M., Tjahjono, D. H., Siswandono. (2021). In silico study of 1-benzoyl-3-methylthiourea derivatives activity as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor candidates. Chemical Data Collections, 34(36), 100741. https://doi.org/10.1016/j.cdc.2021.100741

Selick, H. E., Beresford, A. P., Tarbit, M. H. (2002). The emerging importance of predictive ADME simulation in drug discovery. Drug Discovery Today, 7(2), 109–116. https://doi.org/10.1016/S1359-6446(01)02100-6

Su, J., Sun, T., Wang, Y., Shen, Y. (2022). Conformational Dynamics of Glucagon-like Peptide-2 with Different Electric Field. Polymers, 14(2722). https://doi.org/https://doi.org/10.3390/polym14132722

Sunani, Andani, M., Kamaludin, A., Stannia, N., Helmi, P., Mei, K., Guspira, Y., Sabetta, O., Aulifa, D. (2022). In Silico Study of Compounds in Bawang Dayak ( Eleutherine palmifolia ( L ) Merr .) Bulbs on Alpha Estrogen Receptors. Indonesian Journal of Cancer Chemoprevention, June, 83–93.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Tam, B., Sinha, S., Wang, S. M. (2020). Combining Ramachandran plot and molecular dynamics simulation for structural-based variant classification: Using TP53 variants as model. Computational and Structural Biotechnology Journal, 18, 4033–4039. https://doi.org/10.1016/j.csbj.2020.11.041

Tilaoui, M., Ait Mouse, H., Zyad, A. (2021). Update and New Insights on Future Cancer Drug Candidates From Plant-Based Alkaloids. Frontiers in Pharmacology, 12(December), 1–19. https://doi.org/10.3389/fphar.2021.719694

Tran, N. T., Jakovlić, I., Wang, W.-M. (2015). In silico characterisation, homology modelling and structure-based functional annotation of blunt snout bream (Megalobrama amblycephala) Hsp70 and Hsc70 proteins. Journal of Animal Science and Technology, 57(1), 1–9. https://doi.org/10.1186/s40781-015-0077-x

Trott, O., Olson, A. J. (2009). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of computational chemistry, 31(2), 174–182. https://doi.org/10.1002/jcc.21334

Wallner, B. (2006). Identification of correct regions in protein models using structural, alignment, and consensus information. Protein Science, 15(4), 900–913. https://doi.org/10.1110/ps.051799606

Wang, D., Zhang, W., Zhang, X., Li, M., Wu, Q., Li, X., Zhao, L., Yuan, Q., Yu, Y., Lu, J., Zhao, J., Dong, Z., Liu, K., Jiang, Y. (2023). Daurisoline suppresses esophageal squamous cell carcinoma growth in vitro and in vivo by targeting MEK1/2 kinase. Molecular Carcinogenesis, December 2022. https://doi.org/10.1002/mc.23503

Wilding, B., Scharn, D., Böse, D., Baum, A., Santoro, V., Chetta, P., Schnitzer, R., Botesteanu, D. A., Reiser, C., Kornigg, S., Knesl, P., Hörmann, A., Köferle, A., Corcokovic, M., Lieb, S., Scholz, G., Bruchhaus, J., Spina, M., Balla, J., … Neumüller, R. A. (2022). Discovery of potent and selective HER2 inhibitors with efficacy against HER2 exon 20 insertion-driven tumors, which preserve wild-type EGFR signaling. Nature Cancer, 3(7), 821–836. https://doi.org/10.1038/s43018-022-00412-y

Wiltgen, M. (2018). Algorithms for structure comparison and analysis: Homology modelling of proteins. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics (Vol. 1–3). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-809633-8.20484-6

Wu, M. Y., Wang, S. F., Cai, C. Z., Tan, J. Q., Li, M., Lu, J. J., Chen, X. P., Wang, Y. T., Zheng, W., Lu, J. H. (2017). Natural autophagy blockers, dauricine (DAC) and daurisoline (DAS), sensitize cancer cells to camptothecin-induced toxicity. Oncotarget, 8(44), 77673–77684. https://doi.org/10.18632/oncotarget.20767

Yang, C., Xia, A. J., Du, C. H., Hu, M. X., Gong, Y. L., Tian, R., Jiang, X., Xie, Y. M. (2022). Discovery of highly potent and selective 7-ethyl-10-hydroxycamptothecin-glucose conjugates as potential anti-colorectal cancer agents. Frontiers in Pharmacology, 13(November), 1–12. https://doi.org/10.3389/fphar.2022.1014854

Zhang, Z., Olland, A. M., Zhu, Y., Cohen, J., Berrodin, T., Chippari, S., Appavu, C., Li, S., Wilhem, J., Chopra, R., Fensome, A., Zhang, P., Wrobel, J., Unwalla, R. J., Lyttle, C. R., Winneker, R. C. (2005). Molecular and pharmacological properties of a potent and selective novel nonsteroidal progesterone receptor agonist tanaproget. The Journal of Biological Chemistry, 280(31), 28468–28475. https://doi.org/10.1074/jbc.M504144200


Full Text: PDF

DOI: 10.15408/jkv.v9i1.31481

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ruswanto Ruswanto, Anindita Tri Kusuma Pratita, Richa Mardianingrum, Sedin Renadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.