Production of Bio hydrocarbons from Vegetable Oils and Animal Fats Using Magnesium Oxide as Catalyst
Abstract
Bio hydrocarbons are renewable fuels that can be produced through the catalytic deoxygenation of fatty acids, resulting in compositions like gasoline, kerosene, and diesel fractions derived from petroleum. The objective of this study is to generate gasoline, kerosene, and diesel from vegetable oils and animal fats using an MgO catalyst synthesized through the calcination of Mg-citrate. The characterization of the MgO catalyst, employing Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface adsorption method, revealed the presence of crystalline MgO and showed that mesoporous MgO with average pore size of 15.52 nm and exhibiting a surface area of 35.68 m2 g-1. The MgO catalyst was utilized in the deoxygenation reaction of palm oil, palm wax, and chicken fat, leading to the production of bio hydrocarbons with paraffin and olefin compositions like those found in gasoline, kerosene, and diesel derived from petroleum. Gas Chromatography-Mass Spectroscopy (GCMS) analysis of the liquid product demonstrated that the highest quantity of gasoline was derived from palm wax, followed by palm oil and chicken fat. Palm wax exhibits promising potential as a raw material for gasoline production through the deoxygenation reaction, specifically through decarboxylation and decarbonylation processes facilitated by the MgO catalyst.
Keywords
References
Adewale P, Dumont MJ, Ngadi M. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew Sustain Energy Rev. 2015;45:574-588. doi:10.1016/j.rser.2015.02.039
Aziz I, Nurbayti S, Ulum B. Pembuatan produk biodiesel dari Minyak Goreng Bekas dengan Cara Esterifikasi dan Transesterifikasi. J Kim Val. 2012;2(3):443-448. doi:10.15408/jkv.v2i3.115
Scaldaferri CA, Pasa VMD. Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst. Fuel. 2019;245(December 2018):458-466. doi:10.1016/j.fuel.2019.01.179
Makertihartha IGBN, Fitradi RB, Ramadhani AR, Laniwati M, Muraza O, Subagjo. Biogasoline Production from Palm Oil: Optimization of Catalytic Cracking Parameters. Arab J Sci Eng. 2020;45(9):7257-7266. doi:10.1007/s13369-020-04354-4
Aziz I, Adhani L, Maulana MI, Marwono MA, Dwiatmoko AA, Nurbayti S. Conversion of Nyamplung Oil into Green Diesel through Catalytic Deoxygenation using NiAg/ZH Catalyst. J Kim Val. 2022;8(2):240-250. doi:10.15408/jkv.v8i2.25943
Tabandeh M, Cheng CK, Centi G, et al. Recent advancement in deoxygenation of fatty acids via homogeneous catalysis for biofuel production. Mol Catal. 2022;523(August):111207. doi:10.1016/j.mcat.2020.111207
Sembiring KC, Aunillah A, Minami E, Saka S. Renewable gasoline production from oleic acid by oxidative cleavage followed by decarboxylation. Renew Energy. 2018;122:602-607. doi:10.1016/j.renene.2018.01.107
Zhang Z, Chen Z, Chen H, et al. Catalytic decarbonylation of stearic acid to hydrocarbons over activated carbon-supported nickel. Sustain Energy Fuels. 2018;2(8):1837-1843. doi:10.1039/c8se00189h
Santos MC, Lourenço RM, de Abreu DH, et al. Gasoline-like hydrocarbons by catalytic cracking of soap phase residue of neutralization process of palm oil (Elaeis guineensis Jacq). J Taiwan Inst Chem Eng. 2017;71(November):106-119. doi:10.1016/j.jtice.2016.11.016
Santos MC, Lourenço RM, de Abreu DH, et al. Gasoline-like hydrocarbons by catalytic cracking of soap phase residue of neutralization process of palm oil (Elaeis guineensis Jacq). J Taiwan Inst Chem Eng. 2017;71:106-119. doi:10.1016/j.jtice.2016.11.016
Zhang J, Wang K, Nolte MW, Choi YS, Brown RC, Shanks BH. Catalytic Deoxygenation of Bio-Oil Model Compounds over Acid-Base Bifunctional Catalysts. ACS Catal. 2016;6(4):2608-2621. doi:10.1021/acscatal.6b00245
Zhang J, Wang K, Nolte MW, Choi YS, Brown RC, Shanks BH. Catalytic Deoxygenation of Bio-Oil Model Compounds over Acid-Base Bifunctional Catalysts. ACS Catal. 2016;6(4):2608-2621. doi:10.1021/acscatal.6b00245
Riyadhi A, Yulizar Y, Susanto BH. Catalytic conversion of beef tallow with MgO derived from MgCO3for biofuels production. IOP Conf Ser Mater Sci Eng. 2020;902(1). doi:10.1088/1757-899X/902/1/012049
Papageridis KN, Charisiou ND, Douvartzides S, et al. Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil. Renew Energy. 2020;162:1793-1810. doi:10.1016/j.renene.2020.09.133
Khromova SA, Smirnov AA, Selishcheva SA, et al. Magnesium-containing catalysts for the decarboxylation of bio-oil. Catal Ind. 2013;5(3):260-268. doi:10.1134/S2070050413030069
Pilarska AA, Klapiszewski Ł, Jesionowski T. Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review. Powder Technol. 2017;319:373-407. doi:10.1016/j.powtec.2017.07.009
Ruhaimi AH, Aziz MAA, Jalil AA. Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities. J CO2 Util. 2020;(October):101357. doi:10.1016/j.jcou.2020.101357
Kaduk JA. Crystal structures of two magnesium citrates from powder diffraction data. Acta Crystallogr Sect E Crystallogr Commun. 2020;76(I):1611-1616. doi:10.1107/S2056989020011913
Riyadhi A, Yulizar Y, Susanto BH. Catalytic Conversion of Beef Tallow to Biofuels using MgO Nanoparticles Green Synthesized by Zingiber officinale Roscoe Rhizome Extract. 2022;13(April 2021):900-911. doi:10.14716/ijtech.v13i4.4821
Tamilselvi P, Yelilarasi A, Hema M, Anbarasan R. Synthesis of hierarchical structured MgO by sol-gel method. 2013;2(1):1-5.
Bian SW, Baltrusaitis J, Galhotra P, Grassian VH. A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption. J Mater Chem. 2010;20(39):8705-8710. doi:10.1039/c0jm01261k
Knoll C, Müller D, Artner W, et al. Magnesium oxide from natural magnesite samples as thermochemical energy storage material. Energy Procedia. 2019;158:4861-4869. doi:10.1016/j.egypro.2019.01.707
Hermida L, Abdullah AZ, Mohamed AR. Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renew Sustain Energy Rev. 2015;42:1223-1233. doi:10.1016/j.rser.2014.10.099
Serrano DP, Arroyo M, Briones L, Hernando H, Escola JM. Selective decarboxylation of fatty acids catalyzed by Pd-supported hierarchical ZSM-5 zeolite. Energy and Fuels. 2021;35(21):17167-17181. doi:10.1021/acs.energyfuels.1c01373
Miao C, Marin-Flores O, Davidson SD, et al. Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst. Fuel. 2016;166:302-308. doi:10.1016/j.fuel.2015.10.120
Roesyadi A, Hariprajitno D, Nurjannah N, Savitri SD. HZSM-5 catalyst for cracking palm oil to gasoline: A comparative study with and without impregnation. Bull Chem React Eng Catal. 2013;7(3):185-190. doi:10.9767/bcrec.7.3.4045.185-190
Simakova I, Simakova O, Mäki-Arvela P, Simakov A, Estrada M, Murzin DY. Deoxygenation of palmitic and stearic acid over supported Pd catalysts: Effect of metal dispersion. Appl Catal A Gen. 2009;355(1-2):100-108. doi:10.1016/j.apcata.2008.12.001
DOI: 10.15408/jkv.v9i2.30865
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Yusraini Dian Inayati Siregar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.