Use of CoO/ZnAl2O4 Catalysts and Microwaved Assisted in Vanillin Synthesis

Damiana Nofita Birhi, Elvina Dhiaul Iftitah, Warsito Warsito


Vanillin is a main component in vanilla, which is widely used in the industrial world. Market demand for vanillin extract continues to increase, while the availability of vanilla pods is decreasing. To overcome this problem, research on the synthesis of vanillin continues to be carried out and develops every year. This research aims to examine the conversion level and selectivity of the catalyst as well as microwave radiation efficiency usage in vanillin synthesis. Catalyst CoO/ZnAl2O4 was synthesized from CoO and ZnAl2O4 using the impregnation method, then analyzed using FTIR, XRD, and SEM-EDX. Vanillin synthesis was conducted in two steps, incorporating microwave usage at 120oC, underwent 30 minutes to be completed then followed by oxidation around 10- and 15-minutes involving nitrobenzene also 1%, 4%, and 7% of catalysts CoO/ZnAl2O4. The result showed that during 10 and 15 minutes, the selectivity value and various yield percentages for each time variation and catalyst loading of vanillin had been successfully 100% converted. The best result was obtained using CoO/ZnAl2O4 with 4% catalyst loading for 15 minutes. The selectivity value and yield percentages were 67.78% and 7.5%. A one-step vanillin synthesis with conventional reflux could also be a comparison. The reactions were done at 130oC for 2 and 3 hours with 4% catalyst loading.


Catalyst CoO/ZnAl2O4; eugenol isomerizes; vanillin oxidation; vanillin synthesis


Birhi, N.D., Iftitah, E.D, Warsito, W., Ismail, A.Q. (2021). One-Pot Catalytic Oxidation for Transforming Eugenol to Vanillin Using ZnAl2O4 Catalyst. The Journal of Pure and Applied Chemistry Research, 10(3), 203–213.

Eskandari Azar, B., Ramazani, A., Taghavi Fardood, S., Morsali, A. (2020). Green synthesis and characterization of ZnAl2O4@ZnO nanocomposite and its environmental applications in rapid dye degradation. Optik, 208(November 2019), 164129.

Franco, A., De, S., Balu, A. M., Garcia, A., Luque, R. (2017). Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of isoeugenol to vanillin. Beilstein Journal of Organic Chemistry, 13, 1439–1445.

Franco, A., De, S., Balu, A. M., Romero, A. A., Luque, R. (2017). Selective Oxidation of Isoeugenol to Vanillin over Mechanochemically Synthesized Aluminosilicate Supported Transition Metal Catalysts. ChemistrySelect, 2(29), 9546–9551.

Gallage, N. J., Møller, B. L. (2015). Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Molecular Plant, 8(1), 40–57.

García-Albar, P., Lázaro, N., ALOthman, Z. A., Romero, A. A., Luque, R., Pineda, A. (2021). Catalytic wet hydrogen peroxide oxidation of isoeugenol to vanillin using microwave-assisted synthesized metal loaded catalysts. Molecular Catalysis, 506(July 2020).

Jha, A., Rode, C. V. (2013). Highly selective liquid-phase aerobic oxidation of vanillyl alcohol to vanillin on cobalt oxide (Co3O4) nanoparticles. New Journal of Chemistry, 37(9), 2669–2674.

Lu, A., Chen, Y., Jin, J., Yue, G. H., Peng, D. L. (2012). CoO nanocrystals as a highly active catalyst for the generation of hydrogen from hydrolysis of sodium borohydride. Journal of Power Sources, 220, 391–398.

Manteghi, F., Kazemi, S. H., Peyvandipour, M., Asghari, A. (2015). Preparation and application of cobalt oxide nanostructures as electrode materials for electrochemical supercapacitors. RSC Advances, 5(93), 76458–76463.

Marquez-Medina, M. D., Prinsen, P., Li, H., Shih, K., Romero, A. A., Luque, R. (2018a). Continuous-Flow Synthesis of Supported Magnetic Iron Oxide Nanoparticles for Efficient Isoeugenol Conversion into Vanillin. ChemSusChem, 11(2), 389–396.

Marquez-Medina, M. D., Prinsen, P., Li, H., Shih, K., Romero, A. A., Luque, R. (2018b). Continuous-Flow Synthesis of Supported Magnetic Iron Oxide Nanoparticles for Efficient Isoeugenol Conversion into Vanillin. ChemSusChem, 11(2), 389–396.

Mulyono, E. D. Y. (2012). Perancangan Proses Produksi Isoeugenol dan Vanilin dari Eugenol Minyak Daun Cengkeh.

Ni, J., Tao, F., Du, H., Xu, P. (2015). Analisis Financial Usaha Peternakan Ayam Boiler Pola Kemitraan. In Scientific Reports (Vol. 5, Issue September). Nature Publishing Group.

Ostovar, S., Franco, A., Puente-Santiago, A. R., Pinilla-de Dios, M., Rodríguez-Padrón, D., Shaterian, H. R., Luque, R. (2018). Efficient mechanochemical bifunctional nanocatalysts for the conversion of isoeugenol to vanillin. Frontiers in Chemistry, 6(APR), 1–7.

Peymanfar, R., Fazlalizadeh, F. (2020). Microwave absorption performance of ZnAl2O4. Chemical Engineering Journal, 402, 126089.

Rahmanivahid, B., de Dios, M. P., Haghighi, M., Luque, R. (2019). Mechanochemical synthesis of CuO/MgAl2O4 and MgFe2O4 spinels for vanillin production from isoeugenol and vanillyl alcohol. Molecules, 24(14).

Soekartawi. (2006). Analisis Usaha Tani. In UI Press.

Sudarmin, P. (2014). Transformasi Eugenol Menjadi Isoeugenol Asetat Melalui Isomerisasi Dan Asetilasi. Indonesian Journal of Chemical Science, 3(3).

Suratiyah. (2006). Ilmu Usaha Tani. In Penebar Swadaya, Jakarta.

Yang, W., Tang, H., Ni, J., Wu, Q., Hua, D., Tao, F., Xu, P. (2013). Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin. PLoS ONE, 8(6).

Full Text: PDF

DOI: 10.15408/jkv.v9i1.29727


  • There are currently no refbacks.

Copyright (c) 2023 Damiana Nofita Birhi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.