Use of CoO/ZnAl2O4 Catalysts and Microwaved Assisted in Vanillin Synthesis

Damiana Nofita Birhi, Elvina Dhiaul Iftitah, Warsito Warsito

Abstract


Vanillin is a main component in vanilla, which is widely used in the industrial world. Market demand for vanillin extract continues to increase, while the availability of vanilla pods is decreasing. To overcome this problem, research on the synthesis of vanillin continues to be carried out and develops every year. This research aims to examine the conversion level and selectivity of the catalyst as well as microwave radiation efficiency usage in vanillin synthesis. Catalyst CoO/ZnAl2O4 was synthesized from CoO and ZnAl2O4 using the impregnation method, then analyzed using FTIR, XRD, and SEM-EDX. Vanillin synthesis was conducted in two steps, incorporating microwave usage at 120oC, underwent 30 minutes to be completed then followed by oxidation around 10- and 15-minutes involving nitrobenzene also 1%, 4%, and 7% of catalysts CoO/ZnAl2O4. The result showed that during 10 and 15 minutes, the selectivity value and various yield percentages for each time variation and catalyst loading of vanillin had been successfully 100% converted. The best result was obtained using CoO/ZnAl2O4 with 4% catalyst loading for 15 minutes. The selectivity value and yield percentages were 67.78% and 7.5%. A one-step vanillin synthesis with conventional reflux could also be a comparison. The reactions were done at 130oC for 2 and 3 hours with 4% catalyst loading.


Keywords


Catalyst CoO/ZnAl2O4; eugenol isomerizes; vanillin oxidation; vanillin synthesis

References


Birhi, N.D., Iftitah, E.D, Warsito, W., Ismail, A.Q. (2021). One-Pot Catalytic Oxidation for Transforming Eugenol to Vanillin Using ZnAl2O4 Catalyst. The Journal of Pure and Applied Chemistry Research, 10(3), 203–213. https://doi.org/10.21776/ub.jpacr.2021.010.03.622

Eskandari Azar, B., Ramazani, A., Taghavi Fardood, S., Morsali, A. (2020). Green synthesis and characterization of ZnAl2O4@ZnO nanocomposite and its environmental applications in rapid dye degradation. Optik, 208(November 2019), 164129. https://doi.org/10.1016/j.ijleo.2019.164129

Franco, A., De, S., Balu, A. M., Garcia, A., Luque, R. (2017). Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of isoeugenol to vanillin. Beilstein Journal of Organic Chemistry, 13, 1439–1445. https://doi.org/10.3762/bjoc.13.141

Franco, A., De, S., Balu, A. M., Romero, A. A., Luque, R. (2017). Selective Oxidation of Isoeugenol to Vanillin over Mechanochemically Synthesized Aluminosilicate Supported Transition Metal Catalysts. ChemistrySelect, 2(29), 9546–9551. https://doi.org/10.1002/slct.201701273

Gallage, N. J., Møller, B. L. (2015). Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Molecular Plant, 8(1), 40–57. https://doi.org/10.1016/j.molp.2014.11.008

García-Albar, P., Lázaro, N., ALOthman, Z. A., Romero, A. A., Luque, R., Pineda, A. (2021). Catalytic wet hydrogen peroxide oxidation of isoeugenol to vanillin using microwave-assisted synthesized metal loaded catalysts. Molecular Catalysis, 506(July 2020). https://doi.org/10.1016/j.mcat.2021.111537

Jha, A., Rode, C. V. (2013). Highly selective liquid-phase aerobic oxidation of vanillyl alcohol to vanillin on cobalt oxide (Co3O4) nanoparticles. New Journal of Chemistry, 37(9), 2669–2674. https://doi.org/10.1039/c3nj00508a

Lu, A., Chen, Y., Jin, J., Yue, G. H., Peng, D. L. (2012). CoO nanocrystals as a highly active catalyst for the generation of hydrogen from hydrolysis of sodium borohydride. Journal of Power Sources, 220, 391–398. https://doi.org/10.1016/j.jpowsour.2012.08.010

Manteghi, F., Kazemi, S. H., Peyvandipour, M., Asghari, A. (2015). Preparation and application of cobalt oxide nanostructures as electrode materials for electrochemical supercapacitors. RSC Advances, 5(93), 76458–76463. https://doi.org/10.1039/c5ra09060a

Marquez-Medina, M. D., Prinsen, P., Li, H., Shih, K., Romero, A. A., Luque, R. (2018a). Continuous-Flow Synthesis of Supported Magnetic Iron Oxide Nanoparticles for Efficient Isoeugenol Conversion into Vanillin. ChemSusChem, 11(2), 389–396. https://doi.org/10.1002/cssc.201701884

Marquez-Medina, M. D., Prinsen, P., Li, H., Shih, K., Romero, A. A., Luque, R. (2018b). Continuous-Flow Synthesis of Supported Magnetic Iron Oxide Nanoparticles for Efficient Isoeugenol Conversion into Vanillin. ChemSusChem, 11(2), 389–396. https://doi.org/10.1002/cssc.201701884

Mulyono, E. D. Y. (2012). Perancangan Proses Produksi Isoeugenol dan Vanilin dari Eugenol Minyak Daun Cengkeh.

Ni, J., Tao, F., Du, H., Xu, P. (2015). Analisis Financial Usaha Peternakan Ayam Boiler Pola Kemitraan. In Scientific Reports (Vol. 5, Issue September). Nature Publishing Group. https://doi.org/10.1038/srep13670

Ostovar, S., Franco, A., Puente-Santiago, A. R., Pinilla-de Dios, M., Rodríguez-Padrón, D., Shaterian, H. R., Luque, R. (2018). Efficient mechanochemical bifunctional nanocatalysts for the conversion of isoeugenol to vanillin. Frontiers in Chemistry, 6(APR), 1–7. https://doi.org/10.3389/fchem.2018.00077

Peymanfar, R., Fazlalizadeh, F. (2020). Microwave absorption performance of ZnAl2O4. Chemical Engineering Journal, 402, 126089. https://doi.org/10.1016/j.cej.2020.126089

Rahmanivahid, B., de Dios, M. P., Haghighi, M., Luque, R. (2019). Mechanochemical synthesis of CuO/MgAl2O4 and MgFe2O4 spinels for vanillin production from isoeugenol and vanillyl alcohol. Molecules, 24(14). https://doi.org/10.3390/molecules24142597

Soekartawi. (2006). Analisis Usaha Tani. In UI Press. https://doi.org/10.1002/tcr.201800059

Sudarmin, P. (2014). Transformasi Eugenol Menjadi Isoeugenol Asetat Melalui Isomerisasi Dan Asetilasi. Indonesian Journal of Chemical Science, 3(3).

Suratiyah. (2006). Ilmu Usaha Tani. In Penebar Swadaya, Jakarta. http://pubs.acs.org

Yang, W., Tang, H., Ni, J., Wu, Q., Hua, D., Tao, F., Xu, P. (2013). Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0067339


Full Text: PDF

DOI: 10.15408/jkv.v9i1.29727

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Damiana Nofita Birhi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.