Box-Behnken Experimental Design for Electrochemical Aptasensor Optimization on Screen Printed Carbon Electrode/Silica-Ceria

Salma Nur Zakiyyah, Diana Rakhmawaty Eddy, Muhammad Lutfi Firdaus, Toto Subroto, Yeni Wahyuni Hartati

Abstract


This study aims to optimize the epithelial sodium channel (ENaC) electrochemical aptasensor with the Box-Behnken experimental design. ENaC is a protein that plays a role in sodium ion transport in several epithelial tissues and is associated with hypertension. The ENaC protein aptamer is held in place in the electrochemical aptasensor by a modified screen-printed carbon electrode (SPCE) of silica-ceria composite (SiO2-CeO2). The unique structure of a silica matrix with high biocompatibility can form composites through a hydrothermal process. The Box-Behnken (BBD) experimental design is an efficient optimization method of factors that affect the experiment at three levels. The FTIR results of the silica-ceria composites were 549.35 cm-1 (Ce-O), 1095.3 cm-1 (Si-O-Si), and 491.28 cm-1 (Si-O). Meanwhile, SPCE/silica-ceria characterized by differential pulse voltammetry (DPV) showed an increase in peak current [Fe(CN)6]3-/4- from 3.190 μA to 9.073 μA. Three experimental factors, aptamer concentration, streptavidin incubation time, and aptamer incubation time, were optimized with BBD and obtained at 0.5 μg.mL-1, 30 minutes, and 1 hour. The optimum conditions observed resulted in a selective current response for ENaC protein detection. The optimization results can be applied to aptamer-based ENaC protein detection in samples.


Keywords


Box-behnken; electrochemical aptasensor; optimization; silica-ceria composite

References


Ali, M. M., Mahdi, H. S., Parveen, A., & Azam, A. (2018). Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method. AIP Conference Proceedings, 1953, 1–5. https://doi.org/10.1063/1.5032379

Bai, Y., Yang, H., Yang, W., Li, Y., & Sun, C. (2007). Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sensors and Actuators, B: Chemical, 124(1), 179–186. https://doi.org/10.1016/j.snb.2006.12.020

Calvache-Muñoz, J., Prado, F. A., & Rodríguez-Páez, J. E. (2017). Cerium oxide nanoparticles: Synthesis, characterization and tentative mechanism of particle formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 146–159. https://doi.org/10.1016/j.colsurfa.2017.05.059

Chivers, C. E., Koner, A. L., Lowe, E. D., & Howarth, M. (2011). How the biotin-streptavidin interaction was made even stronger: Investigation via crystallography and a chimaeric tetramer. Biochemical Journal, 435(1), 55–63. https://doi.org/10.1042/BJ20101593

Choi, H. W., Lee, K. H., Hur, N. H., & Lim, H. B. (2014). Cerium oxide-deposited mesoporous silica nanoparticles for the determination of carcinoembryonic antigen in serum using inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 847, 10–15. https://doi.org/10.1016/j.aca.2014.08.041

Dalmis, R., Birlik, I., Ak Azem, N. F., & Celik, E. (2020). Structurally colored silica photonic crystal coatings modified by Ce or Eu rare-earth dopants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603(June 2020), 125138. https://doi.org/10.1016/j.colsurfa.2020.125138

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 1–17. https://doi.org/10.3390/pharmaceutics10020057

De Morais, A., Silveira, G., Villis, P. C. M., Maroneze, C. M., Gushikem, Y., Pissetti, F. L., & Lucho, A. M. S. (2012). Gold nanoparticles on a thiol-functionalized silica network for ascorbic acid electrochemical detection in presence of dopamine and uric acid. Journal of Solid State Electrochemistry, 16(9), 2957–2966. https://doi.org/10.1007/s10008-012-1701-z

del Valle, M. (2021). Sensors as green tools in analytical chemistry. Current Opinion in Green and Sustainable Chemistry, 31, 100501. https://doi.org/10.1016/J.COGSC.2021.100501

Dundas, C. M., Demonte, D., & Park, S. (2013). Streptavidin-biotin technology: Improvements and innovations in chemical and biological applications. Applied Microbiology and Biotechnology, 97(21), 9343–9353. https://doi.org/10.1007/s00253-013-5232-z

Fadzil, N. A. M., Rahim, M. H. A., & Maniam, G. P. (2018). Room temperature synthesis of ceria by the assisted of cationic surfactant and aging time. Malaysian Journal of Analytical Sciences, 22(3), 404–415. https://doi.org/10.17576/mjas-2018-2203-05

Fazrin, E. I., Sari, A. K., Setiyono, R., Gaffar, S., Sofiatin, Y., Bahti, H. H., & Hartati, Y. W. (2022). The Selectivity and Stability of Epithelial Sodium Channel (ENaC) Aptamer as an Electrochemical Aptasensor. Analytical & Bioanalytical Electrochemistry, 14(7), 715–729.

Firdaus, M. L., Madina, F. E., Sasti, Y. F., Elvia, R., Ishmah, S. N., Eddy, D. R., & Cid-Andres, A. P. (2020). Silica extraction from beach sand for dyes removal: Isotherms, kinetics and thermodynamics. Rasayan Journal of Chemistry, 13(1), 249–254. https://doi.org/10.31788/RJC.2020.1315496

García‐Rubio, D. L., de la Mora, M. B., Cerecedo, D., Saniger Blesa, J. M., & Villagrán‐Muniz, M. (2020). An optical-based biosensor of the epithelial sodium channel as a tool for diagnosing hypertension. Biosensors and Bioelectronics, 157(March). https://doi.org/10.1016/j.bios.2020.112151

Hartati, Y. W., Gaffar, S., Alfiani, D., Pratomo, U., Sofiatin, Y., & Subroto, T. (2020). A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. Sensing and Bio-Sensing Research, 29(April). https://doi.org/10.1016/j.sbsr.2020.100343

Hartati, Y. W., Komala, D. R., Hendrati, D., Gaffar, S., Hardianto, A., Sofiatin, Y., & Bahti, H. H. (2021). An aptasensor using ceria electrodeposited-screen-printed carbon electrode for detection of epithelial sodium channel protein as a hypertension biomarker. Royal Society Open Science, 8(2). https://doi.org/10.1098/rsos.202040

Hartati, Y. W., Yusup, S. F., Fitrilawati, Wyantuti, S., Sofiatin, Y., & Gaffar, S. (2020). A voltammetric epithelial sodium channels immunosensor using screen-printed carbon electrode modified with reduced graphene oxide. Current Chemistry Letters, 9(4), 151–160. https://doi.org/10.5267/j.ccl.2020.2.001

Hyre, D. E. (2006). Cooperative hydrogen bond interactions in the streptavidin-biotin system. Protein Science, 15(3), 459–467. https://doi.org/10.1110/ps.051970306

Intartaglia, R., Bagga, K., Scotto, M., Diaspro, A., & Brandi, F. (2012). Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Optical Materials Express, 2(5), 510. https://doi.org/10.1364/ome.2.000510

Ishmah, S. N., Permana, M. D., Firdaus, M. L., & Eddy, D. R. (2020). Extraction of Silica from Bengkulu Beach Sand using Alkali Fusion Method. PENDIPA Journal of Science Education, 4(2), 1–5. https://doi.org/10.33369/pendipa.4.2.1-5

Ismail, S., Yusof, N. A., Abdullah, J., & Abd Rahman, S. F. (2020a). Development of Electrochemical Sensor Based on Silica/Gold Nanoparticles Modified Electrode for Detection of Arsenite. IEEE Sensors Journal, 20(7), 3406–3414. https://doi.org/10.1109/JSEN.2019.2953799

Ismail, S., Yusof, N. A., Abdullah, J., & Abd Rahman, S. F. (2020b). Electrochemical detection of arsenite using a silica nanoparticles-modified screen-printed carbon electrode. Materials, 13(3168), 1–16. https://doi.org/10.3390/ma13143168

Jalilpour, M., & Fathalilou, M. (2012). Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method. International Journal of the Physical Sciences, 7(6), 944–948. https://doi.org/10.5897/ijps11.131

Jekel, C. F., Haftka, R. T., Venter, G., & Venter, M. P. (2018). Lack-of-fit Tests to Indicate Material Model Improvement or Experimental Data Noise Reduction. January. https://doi.org/10.2514/6.2018-1664

Kalambate, P. K., Rao, Z., Dhanjai, Wu, J., Shen, Y., Boddula, R., & Huang, Y. (2020). Electrochemical (bio) sensors go green. Biosensors and Bioelectronics, 163, 112270. https://doi.org/10.1016/J.BIOS.2020.112270

Khan, M. S., Dosoky, N. S., Berdiev, B. K., & Williams, J. D. (2016). Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore. European Biophysics Journal, 45(8), 843–852. https://doi.org/10.1007/s00249-016-1156-8

Khan, M. S., Dosoky, N. S., Mustafa, G., Patel, D., Berdiev, B., & Williams, J. D. (2017). Electrophysiology of Epithelial Sodium Channel (ENaC) Embedded in Supported Lipid Bilayer Using a Single Nanopore Chip. Langmuir, 33(47), 13680–13688. https://doi.org/10.1021/acs.langmuir.7b02404

Komala, D. R., Hardianto, A., Gaffar, S., & Hartati, Y. W. (2021). An epithelial sodium channel (ENaC)-specific aptamer determined through structure-based virtual screening for the development of hypertension early detection system. Pharmaceutical Sciences, 27(1), 67–75. https://doi.org/10.34172/PS.2020.63

Li, J., Hao, Y., Li, H., Xia, M., Sun, X., & Wang, L. (2009). Direct synthesis of CeO2/SiO2 mesostructured composite materials via sol-gel process. Microporous and Mesoporous Materials, 120(3), 421–425. https://doi.org/10.1016/j.micromeso.2008.12.014

Ma, Q., Li, Y., & Su, X. (2015). Silica-nanobead-based sensors for analytical and bioanalytical applications. Trends in Analytical Chemistry, 74, 130–145. https://doi.org/10.1016/j.trac.2015.06.006

Maharani, D. K., & Hidayah, R. (2015). PREPARATION AND CHARACTERIZATION OF CHITOSAN-ZnO/Al2O3 COMPOSITE. Molekul, 10(3500), 9–18.

Nguyen, H. T. T., Ohtani, M., & Kobiro, K. (2019). One-pot synthesis of SiO2‒CeO2 nanoparticle composites with enhanced heat tolerance. Microporous and Mesoporous Materials, 273, 35–40. https://doi.org/10.1016/j.micromeso.2018.06.043

Perincek, O., & Colak, M. (2013). Use of Experimental Box-Behnken Design for the Estimation of Interactions Between Harmonic Currents Produced by Single Phase Loads. International Journal of Engineering Research and Applications, 3(2), 158–165.

Phanichphant, S., Nakaruk, A., & Channei, D. (2016). Photocatalytic activity of the binary composite CeO2/SiO2 for degradation of dye. Applied Surface Science Journal, 387, 214–220. https://doi.org/10.1016/j.apsusc.2016.06.072

Pujar, M. S., Hunagund, S. M., Desai, V. R., Patil, S., & Sidarai, A. H. (2018). One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method. AIP Conference Proceedings, 1942(April), 1–6. https://doi.org/10.1063/1.5028657

Radojković, M., Zeković, Z., Jokić, S., & Vidović, S. (2012). Determination of optimal extraction parameters of mulberry leaves using response surface methodology (RSM). Romanian Biotechnological Letters, 17(3), 7295–7308.

Reus-Chavarría, E., Martínez-Vieyra, I., Salinas-Nolasco, C., Chávez-Piña, A. E., Méndez-Méndez, J. V., López-Villegas, E. O., Sosa-Peinado, A., & Cerecedo, D. (2019). Enhanced expression of the Epithelial Sodium Channel in neutrophils from hypertensive patients. Biochimica Biophysica Acta - Biomembranes, 1861(2), 387–402. https://doi.org/10.1016/j.bbamem.2018.11.003

Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H., & Morimoto, S. (2018). Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. Journal of Natural Medicines, 72(1), 32–42. https://doi.org/10.1007/s11418-017-1144-z

Sari, A. K., Hartati, Y. W., Gaffar, S., Anshori, I., Hidayat, D., & Wiraswati, H. L. (2022). The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP. Journal of Electrochemical Science and Engineering, 12(1), 219–235. https://doi.org/10.5599/jese.1206

Scholz, F. (2010). Guide to experiments and applications : Pulse Voltammetry. In Electroanalytical Methods. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02915-8

Sedlak, S. M., Schendel, L. C., Gaub, H. E., & Bernardi, R. C. (2020). Streptavidin/biotin: Tethering geometry defines unbinding mechanics. Science Advances, 6(13), 1–11. https://doi.org/10.1126/sciadv.aay5999

Siangproh, W., Dungchai, W., Rattanarat, P., & Chailapakul, O. (2011). Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: A review. Analytica Chimica Acta, 690(1), 10–25. https://doi.org/10.1016/j.aca.2011.01.054

Sofiatin, Y., & MA Roesli, R. (2018). Detection of Urinary Epithelial Sodium Channel (ENaC) Protein. American Journal of Clinical Medicine Research, 6(2), 20–23. https://doi.org/10.12691/ajcmr-6-2-1

Tan, H., Ma, L., Guo, T., Zhou, H., Chen, L., Zhang, Y., Dai, H., & Yu, Y. (2019). A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B 1. Analytica Chimica Acta, 1068(2), 87–95. https://doi.org/10.1016/j.aca.2019.04.014

Vert, M., Doi, Y., Hellwich, K., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications ( IUPAC Recommendations 2012 )*. Pure and Applied Chemistry, 84(2), 377–410.

Walcarius, A. (2018). Silica-based electrochemical sensors and biosensors: Recent trends. Current Opinion in Electrochemistry, 10, 88–97. https://doi.org/10.1016/j.coelec.2018.03.017

Wang, J., Guo, J., Zhang, J., Zhang, W., & Zhang, Y. (2017). RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosensors and Bioelectronics, 95, 100–105. https://doi.org/10.1016/j.bios.2017.04.014

Wyantuti, S., Harahap, F. W., Hartati, Y. W., & Firdaus, M. L. (2021). Application of Plackett-Burman and Box-Behnken experimental designs in differential voltammetry for determining Gadolinium concentration. Journal of Physics: Conference Series, 1731(1). https://doi.org/10.1088/1742-6596/1731/1/012017

Xu, W., Huang, Y., Li, L., Sun, Z., Shen, Y., Xing, J., Li, M., Su, D., & Liang, X. (2016). Hyperuricemia induces hypertension through activation of renal epithelial sodium channel (ENaC). Metabolism: Clinical and Experimental, 65(3), 73–83. https://doi.org/10.1016/j.metabol.2015.10.026

Xunwen, S., Liqun, Z., Weiping, L., Huicong, L., & Hui, Y. (2020). The synthesis of monodispersed M-CeO2/SiO2 nanoparticles and formation of UV absorption coatings with them. Royal Society of Chemistry, 10, 4554–4560. https://doi.org/10.1039/c9ra08975f

Zakiyyah, S. N., Eddy, D. R., Firdaus, M. L., Subroto, T., & Hartati, Y. W. (2022). Screen-printed carbon electrode/natural silica-ceria nanocomposite for electrochemical aptasensor application. Journal of Electrochemical Science and Engineering, 00(0), 1–18. https://doi.org/10.5599/jese.1455


Full Text: PDF

DOI: 10.15408/jkv.v9i1.27493

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Yeni Wahyuni Hartati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.