Box-Behnken Experimental Design for Electrochemical Aptasensor Optimization on Screen Printed Carbon Electrode/Silica-Ceria

Salma Nur Zakiyyah, Diana Rakhmawaty Eddy, Muhammad Lutfi Firdaus, Toto Subroto, Yeni Wahyuni Hartati


This study aims to optimize the epithelial sodium channel (ENaC) electrochemical aptasensor with the Box-Behnken experimental design. ENaC is a protein that plays a role in sodium ion transport in several epithelial tissues and is associated with hypertension. The ENaC protein aptamer is held in place in the electrochemical aptasensor by a modified screen-printed carbon electrode (SPCE) of silica-ceria composite (SiO2-CeO2). The unique structure of a silica matrix with high biocompatibility can form composites through a hydrothermal process. The Box-Behnken (BBD) experimental design is an efficient optimization method of factors that affect the experiment at three levels. The FTIR results of the silica-ceria composites were 549.35 cm-1 (Ce-O), 1095.3 cm-1 (Si-O-Si), and 491.28 cm-1 (Si-O). Meanwhile, SPCE/silica-ceria characterized by differential pulse voltammetry (DPV) showed an increase in peak current [Fe(CN)6]3-/4- from 3.190 μA to 9.073 μA. Three experimental factors, aptamer concentration, streptavidin incubation time, and aptamer incubation time, were optimized with BBD and obtained at 0.5 μg.mL-1, 30 minutes, and 1 hour. The optimum conditions observed resulted in a selective current response for ENaC protein detection. The optimization results can be applied to aptamer-based ENaC protein detection in samples.


Box-behnken; electrochemical aptasensor; optimization; silica-ceria composite


Ali, M. M., Mahdi, H. S., Parveen, A., & Azam, A. (2018). Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method. AIP Conference Proceedings, 1953, 1–5.

Bai, Y., Yang, H., Yang, W., Li, Y., & Sun, C. (2007). Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sensors and Actuators, B: Chemical, 124(1), 179–186.

Calvache-Muñoz, J., Prado, F. A., & Rodríguez-Páez, J. E. (2017). Cerium oxide nanoparticles: Synthesis, characterization and tentative mechanism of particle formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 146–159.

Chivers, C. E., Koner, A. L., Lowe, E. D., & Howarth, M. (2011). How the biotin-streptavidin interaction was made even stronger: Investigation via crystallography and a chimaeric tetramer. Biochemical Journal, 435(1), 55–63.

Choi, H. W., Lee, K. H., Hur, N. H., & Lim, H. B. (2014). Cerium oxide-deposited mesoporous silica nanoparticles for the determination of carcinoembryonic antigen in serum using inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 847, 10–15.

Dalmis, R., Birlik, I., Ak Azem, N. F., & Celik, E. (2020). Structurally colored silica photonic crystal coatings modified by Ce or Eu rare-earth dopants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603(June 2020), 125138.

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 1–17.

De Morais, A., Silveira, G., Villis, P. C. M., Maroneze, C. M., Gushikem, Y., Pissetti, F. L., & Lucho, A. M. S. (2012). Gold nanoparticles on a thiol-functionalized silica network for ascorbic acid electrochemical detection in presence of dopamine and uric acid. Journal of Solid State Electrochemistry, 16(9), 2957–2966.

del Valle, M. (2021). Sensors as green tools in analytical chemistry. Current Opinion in Green and Sustainable Chemistry, 31, 100501.

Dundas, C. M., Demonte, D., & Park, S. (2013). Streptavidin-biotin technology: Improvements and innovations in chemical and biological applications. Applied Microbiology and Biotechnology, 97(21), 9343–9353.

Fadzil, N. A. M., Rahim, M. H. A., & Maniam, G. P. (2018). Room temperature synthesis of ceria by the assisted of cationic surfactant and aging time. Malaysian Journal of Analytical Sciences, 22(3), 404–415.

Fazrin, E. I., Sari, A. K., Setiyono, R., Gaffar, S., Sofiatin, Y., Bahti, H. H., & Hartati, Y. W. (2022). The Selectivity and Stability of Epithelial Sodium Channel (ENaC) Aptamer as an Electrochemical Aptasensor. Analytical & Bioanalytical Electrochemistry, 14(7), 715–729.

Firdaus, M. L., Madina, F. E., Sasti, Y. F., Elvia, R., Ishmah, S. N., Eddy, D. R., & Cid-Andres, A. P. (2020). Silica extraction from beach sand for dyes removal: Isotherms, kinetics and thermodynamics. Rasayan Journal of Chemistry, 13(1), 249–254.

García‐Rubio, D. L., de la Mora, M. B., Cerecedo, D., Saniger Blesa, J. M., & Villagrán‐Muniz, M. (2020). An optical-based biosensor of the epithelial sodium channel as a tool for diagnosing hypertension. Biosensors and Bioelectronics, 157(March).

Hartati, Y. W., Gaffar, S., Alfiani, D., Pratomo, U., Sofiatin, Y., & Subroto, T. (2020). A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. Sensing and Bio-Sensing Research, 29(April).

Hartati, Y. W., Komala, D. R., Hendrati, D., Gaffar, S., Hardianto, A., Sofiatin, Y., & Bahti, H. H. (2021). An aptasensor using ceria electrodeposited-screen-printed carbon electrode for detection of epithelial sodium channel protein as a hypertension biomarker. Royal Society Open Science, 8(2).

Hartati, Y. W., Yusup, S. F., Fitrilawati, Wyantuti, S., Sofiatin, Y., & Gaffar, S. (2020). A voltammetric epithelial sodium channels immunosensor using screen-printed carbon electrode modified with reduced graphene oxide. Current Chemistry Letters, 9(4), 151–160.

Hyre, D. E. (2006). Cooperative hydrogen bond interactions in the streptavidin-biotin system. Protein Science, 15(3), 459–467.

Intartaglia, R., Bagga, K., Scotto, M., Diaspro, A., & Brandi, F. (2012). Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Optical Materials Express, 2(5), 510.

Ishmah, S. N., Permana, M. D., Firdaus, M. L., & Eddy, D. R. (2020). Extraction of Silica from Bengkulu Beach Sand using Alkali Fusion Method. PENDIPA Journal of Science Education, 4(2), 1–5.

Ismail, S., Yusof, N. A., Abdullah, J., & Abd Rahman, S. F. (2020a). Development of Electrochemical Sensor Based on Silica/Gold Nanoparticles Modified Electrode for Detection of Arsenite. IEEE Sensors Journal, 20(7), 3406–3414.

Ismail, S., Yusof, N. A., Abdullah, J., & Abd Rahman, S. F. (2020b). Electrochemical detection of arsenite using a silica nanoparticles-modified screen-printed carbon electrode. Materials, 13(3168), 1–16.

Jalilpour, M., & Fathalilou, M. (2012). Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method. International Journal of the Physical Sciences, 7(6), 944–948.

Jekel, C. F., Haftka, R. T., Venter, G., & Venter, M. P. (2018). Lack-of-fit Tests to Indicate Material Model Improvement or Experimental Data Noise Reduction. January.

Kalambate, P. K., Rao, Z., Dhanjai, Wu, J., Shen, Y., Boddula, R., & Huang, Y. (2020). Electrochemical (bio) sensors go green. Biosensors and Bioelectronics, 163, 112270.

Khan, M. S., Dosoky, N. S., Berdiev, B. K., & Williams, J. D. (2016). Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore. European Biophysics Journal, 45(8), 843–852.

Khan, M. S., Dosoky, N. S., Mustafa, G., Patel, D., Berdiev, B., & Williams, J. D. (2017). Electrophysiology of Epithelial Sodium Channel (ENaC) Embedded in Supported Lipid Bilayer Using a Single Nanopore Chip. Langmuir, 33(47), 13680–13688.

Komala, D. R., Hardianto, A., Gaffar, S., & Hartati, Y. W. (2021). An epithelial sodium channel (ENaC)-specific aptamer determined through structure-based virtual screening for the development of hypertension early detection system. Pharmaceutical Sciences, 27(1), 67–75.

Li, J., Hao, Y., Li, H., Xia, M., Sun, X., & Wang, L. (2009). Direct synthesis of CeO2/SiO2 mesostructured composite materials via sol-gel process. Microporous and Mesoporous Materials, 120(3), 421–425.

Ma, Q., Li, Y., & Su, X. (2015). Silica-nanobead-based sensors for analytical and bioanalytical applications. Trends in Analytical Chemistry, 74, 130–145.

Maharani, D. K., & Hidayah, R. (2015). PREPARATION AND CHARACTERIZATION OF CHITOSAN-ZnO/Al2O3 COMPOSITE. Molekul, 10(3500), 9–18.

Nguyen, H. T. T., Ohtani, M., & Kobiro, K. (2019). One-pot synthesis of SiO2‒CeO2 nanoparticle composites with enhanced heat tolerance. Microporous and Mesoporous Materials, 273, 35–40.

Perincek, O., & Colak, M. (2013). Use of Experimental Box-Behnken Design for the Estimation of Interactions Between Harmonic Currents Produced by Single Phase Loads. International Journal of Engineering Research and Applications, 3(2), 158–165.

Phanichphant, S., Nakaruk, A., & Channei, D. (2016). Photocatalytic activity of the binary composite CeO2/SiO2 for degradation of dye. Applied Surface Science Journal, 387, 214–220.

Pujar, M. S., Hunagund, S. M., Desai, V. R., Patil, S., & Sidarai, A. H. (2018). One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method. AIP Conference Proceedings, 1942(April), 1–6.

Radojković, M., Zeković, Z., Jokić, S., & Vidović, S. (2012). Determination of optimal extraction parameters of mulberry leaves using response surface methodology (RSM). Romanian Biotechnological Letters, 17(3), 7295–7308.

Reus-Chavarría, E., Martínez-Vieyra, I., Salinas-Nolasco, C., Chávez-Piña, A. E., Méndez-Méndez, J. V., López-Villegas, E. O., Sosa-Peinado, A., & Cerecedo, D. (2019). Enhanced expression of the Epithelial Sodium Channel in neutrophils from hypertensive patients. Biochimica Biophysica Acta - Biomembranes, 1861(2), 387–402.

Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H., & Morimoto, S. (2018). Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. Journal of Natural Medicines, 72(1), 32–42.

Sari, A. K., Hartati, Y. W., Gaffar, S., Anshori, I., Hidayat, D., & Wiraswati, H. L. (2022). The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP. Journal of Electrochemical Science and Engineering, 12(1), 219–235.

Scholz, F. (2010). Guide to experiments and applications : Pulse Voltammetry. In Electroanalytical Methods. Springer-Verlag Berlin Heidelberg.

Sedlak, S. M., Schendel, L. C., Gaub, H. E., & Bernardi, R. C. (2020). Streptavidin/biotin: Tethering geometry defines unbinding mechanics. Science Advances, 6(13), 1–11.

Siangproh, W., Dungchai, W., Rattanarat, P., & Chailapakul, O. (2011). Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: A review. Analytica Chimica Acta, 690(1), 10–25.

Sofiatin, Y., & MA Roesli, R. (2018). Detection of Urinary Epithelial Sodium Channel (ENaC) Protein. American Journal of Clinical Medicine Research, 6(2), 20–23.

Tan, H., Ma, L., Guo, T., Zhou, H., Chen, L., Zhang, Y., Dai, H., & Yu, Y. (2019). A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B 1. Analytica Chimica Acta, 1068(2), 87–95.

Vert, M., Doi, Y., Hellwich, K., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications ( IUPAC Recommendations 2012 )*. Pure and Applied Chemistry, 84(2), 377–410.

Walcarius, A. (2018). Silica-based electrochemical sensors and biosensors: Recent trends. Current Opinion in Electrochemistry, 10, 88–97.

Wang, J., Guo, J., Zhang, J., Zhang, W., & Zhang, Y. (2017). RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosensors and Bioelectronics, 95, 100–105.

Wyantuti, S., Harahap, F. W., Hartati, Y. W., & Firdaus, M. L. (2021). Application of Plackett-Burman and Box-Behnken experimental designs in differential voltammetry for determining Gadolinium concentration. Journal of Physics: Conference Series, 1731(1).

Xu, W., Huang, Y., Li, L., Sun, Z., Shen, Y., Xing, J., Li, M., Su, D., & Liang, X. (2016). Hyperuricemia induces hypertension through activation of renal epithelial sodium channel (ENaC). Metabolism: Clinical and Experimental, 65(3), 73–83.

Xunwen, S., Liqun, Z., Weiping, L., Huicong, L., & Hui, Y. (2020). The synthesis of monodispersed M-CeO2/SiO2 nanoparticles and formation of UV absorption coatings with them. Royal Society of Chemistry, 10, 4554–4560.

Zakiyyah, S. N., Eddy, D. R., Firdaus, M. L., Subroto, T., & Hartati, Y. W. (2022). Screen-printed carbon electrode/natural silica-ceria nanocomposite for electrochemical aptasensor application. Journal of Electrochemical Science and Engineering, 00(0), 1–18.

Full Text: PDF

DOI: 10.15408/jkv.v9i1.27493


  • There are currently no refbacks.

Copyright (c) 2023 Yeni Wahyuni Hartati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.