Box-Behnken Experimental Design for Electrochemical Aptasensor Optimization on Screen Printed Carbon Electrode/Silica-Ceria
Abstract
This study aims to optimize the epithelial sodium channel (ENaC) electrochemical aptasensor with the Box-Behnken experimental design. ENaC is a protein that plays a role in sodium ion transport in several epithelial tissues and is associated with hypertension. The ENaC protein aptamer is held in place in the electrochemical aptasensor by a modified screen-printed carbon electrode (SPCE) of silica-ceria composite (SiO2-CeO2). The unique structure of a silica matrix with high biocompatibility can form composites through a hydrothermal process. The Box-Behnken (BBD) experimental design is an efficient optimization method of factors that affect the experiment at three levels. The FTIR results of the silica-ceria composites were 549.35 cm-1 (Ce-O), 1095.3 cm-1 (Si-O-Si), and 491.28 cm-1 (Si-O). Meanwhile, SPCE/silica-ceria characterized by differential pulse voltammetry (DPV) showed an increase in peak current [Fe(CN)6]3-/4- from 3.190 μA to 9.073 μA. Three experimental factors, aptamer concentration, streptavidin incubation time, and aptamer incubation time, were optimized with BBD and obtained at 0.5 μg.mL-1, 30 minutes, and 1 hour. The optimum conditions observed resulted in a selective current response for ENaC protein detection. The optimization results can be applied to aptamer-based ENaC protein detection in samples.
Keywords
References
Ali, M. M., Mahdi, H. S., Parveen, A., & Azam, A. (2018). Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method. AIP Conference Proceedings, 1953, 1–5. https://doi.org/10.1063/1.5032379
Bai, Y., Yang, H., Yang, W., Li, Y., & Sun, C. (2007). Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sensors and Actuators, B: Chemical, 124(1), 179–186. https://doi.org/10.1016/j.snb.2006.12.020
Calvache-Muñoz, J., Prado, F. A., & Rodríguez-Páez, J. E. (2017). Cerium oxide nanoparticles: Synthesis, characterization and tentative mechanism of particle formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 146–159. https://doi.org/10.1016/j.colsurfa.2017.05.059
Chivers, C. E., Koner, A. L., Lowe, E. D., & Howarth, M. (2011). How the biotin-streptavidin interaction was made even stronger: Investigation via crystallography and a chimaeric tetramer. Biochemical Journal, 435(1), 55–63. https://doi.org/10.1042/BJ20101593
Choi, H. W., Lee, K. H., Hur, N. H., & Lim, H. B. (2014). Cerium oxide-deposited mesoporous silica nanoparticles for the determination of carcinoembryonic antigen in serum using inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 847, 10–15. https://doi.org/10.1016/j.aca.2014.08.041
Dalmis, R., Birlik, I., Ak Azem, N. F., & Celik, E. (2020). Structurally colored silica photonic crystal coatings modified by Ce or Eu rare-earth dopants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603(June 2020), 125138. https://doi.org/10.1016/j.colsurfa.2020.125138
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 1–17. https://doi.org/10.3390/pharmaceutics10020057
De Morais, A., Silveira, G., Villis, P. C. M., Maroneze, C. M., Gushikem, Y., Pissetti, F. L., & Lucho, A. M. S. (2012). Gold nanoparticles on a thiol-functionalized silica network for ascorbic acid electrochemical detection in presence of dopamine and uric acid. Journal of Solid State Electrochemistry, 16(9), 2957–2966. https://doi.org/10.1007/s10008-012-1701-z
del Valle, M. (2021). Sensors as green tools in analytical chemistry. Current Opinion in Green and Sustainable Chemistry, 31, 100501. https://doi.org/10.1016/J.COGSC.2021.100501
Dundas, C. M., Demonte, D., & Park, S. (2013). Streptavidin-biotin technology: Improvements and innovations in chemical and biological applications. Applied Microbiology and Biotechnology, 97(21), 9343–9353. https://doi.org/10.1007/s00253-013-5232-z
Fadzil, N. A. M., Rahim, M. H. A., & Maniam, G. P. (2018). Room temperature synthesis of ceria by the assisted of cationic surfactant and aging time. Malaysian Journal of Analytical Sciences, 22(3), 404–415. https://doi.org/10.17576/mjas-2018-2203-05
Fazrin, E. I., Sari, A. K., Setiyono, R., Gaffar, S., Sofiatin, Y., Bahti, H. H., & Hartati, Y. W. (2022). The Selectivity and Stability of Epithelial Sodium Channel (ENaC) Aptamer as an Electrochemical Aptasensor. Analytical & Bioanalytical Electrochemistry, 14(7), 715–729.
Firdaus, M. L., Madina, F. E., Sasti, Y. F., Elvia, R., Ishmah, S. N., Eddy, D. R., & Cid-Andres, A. P. (2020). Silica extraction from beach sand for dyes removal: Isotherms, kinetics and thermodynamics. Rasayan Journal of Chemistry, 13(1), 249–254. https://doi.org/10.31788/RJC.2020.1315496
García‐Rubio, D. L., de la Mora, M. B., Cerecedo, D., Saniger Blesa, J. M., & Villagrán‐Muniz, M. (2020). An optical-based biosensor of the epithelial sodium channel as a tool for diagnosing hypertension. Biosensors and Bioelectronics, 157(March). https://doi.org/10.1016/j.bios.2020.112151
Hartati, Y. W., Gaffar, S., Alfiani, D., Pratomo, U., Sofiatin, Y., & Subroto, T. (2020). A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. Sensing and Bio-Sensing Research, 29(April). https://doi.org/10.1016/j.sbsr.2020.100343
Hartati, Y. W., Komala, D. R., Hendrati, D., Gaffar, S., Hardianto, A., Sofiatin, Y., & Bahti, H. H. (2021). An aptasensor using ceria electrodeposited-screen-printed carbon electrode for detection of epithelial sodium channel protein as a hypertension biomarker. Royal Society Open Science, 8(2). https://doi.org/10.1098/rsos.202040
Hartati, Y. W., Yusup, S. F., Fitrilawati, Wyantuti, S., Sofiatin, Y., & Gaffar, S. (2020). A voltammetric epithelial sodium channels immunosensor using screen-printed carbon electrode modified with reduced graphene oxide. Current Chemistry Letters, 9(4), 151–160. https://doi.org/10.5267/j.ccl.2020.2.001
Hyre, D. E. (2006). Cooperative hydrogen bond interactions in the streptavidin-biotin system. Protein Science, 15(3), 459–467. https://doi.org/10.1110/ps.051970306
Intartaglia, R., Bagga, K., Scotto, M., Diaspro, A., & Brandi, F. (2012). Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Optical Materials Express, 2(5), 510. https://doi.org/10.1364/ome.2.000510
Ishmah, S. N., Permana, M. D., Firdaus, M. L., & Eddy, D. R. (2020). Extraction of Silica from Bengkulu Beach Sand using Alkali Fusion Method. PENDIPA Journal of Science Education, 4(2), 1–5. https://doi.org/10.33369/pendipa.4.2.1-5
Ismail, S., Yusof, N. A., Abdullah, J., & Abd Rahman, S. F. (2020a). Development of Electrochemical Sensor Based on Silica/Gold Nanoparticles Modified Electrode for Detection of Arsenite. IEEE Sensors Journal, 20(7), 3406–3414. https://doi.org/10.1109/JSEN.2019.2953799
Ismail, S., Yusof, N. A., Abdullah, J., & Abd Rahman, S. F. (2020b). Electrochemical detection of arsenite using a silica nanoparticles-modified screen-printed carbon electrode. Materials, 13(3168), 1–16. https://doi.org/10.3390/ma13143168
Jalilpour, M., & Fathalilou, M. (2012). Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method. International Journal of the Physical Sciences, 7(6), 944–948. https://doi.org/10.5897/ijps11.131
Jekel, C. F., Haftka, R. T., Venter, G., & Venter, M. P. (2018). Lack-of-fit Tests to Indicate Material Model Improvement or Experimental Data Noise Reduction. January. https://doi.org/10.2514/6.2018-1664
Kalambate, P. K., Rao, Z., Dhanjai, Wu, J., Shen, Y., Boddula, R., & Huang, Y. (2020). Electrochemical (bio) sensors go green. Biosensors and Bioelectronics, 163, 112270. https://doi.org/10.1016/J.BIOS.2020.112270
Khan, M. S., Dosoky, N. S., Berdiev, B. K., & Williams, J. D. (2016). Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore. European Biophysics Journal, 45(8), 843–852. https://doi.org/10.1007/s00249-016-1156-8
Khan, M. S., Dosoky, N. S., Mustafa, G., Patel, D., Berdiev, B., & Williams, J. D. (2017). Electrophysiology of Epithelial Sodium Channel (ENaC) Embedded in Supported Lipid Bilayer Using a Single Nanopore Chip. Langmuir, 33(47), 13680–13688. https://doi.org/10.1021/acs.langmuir.7b02404
Komala, D. R., Hardianto, A., Gaffar, S., & Hartati, Y. W. (2021). An epithelial sodium channel (ENaC)-specific aptamer determined through structure-based virtual screening for the development of hypertension early detection system. Pharmaceutical Sciences, 27(1), 67–75. https://doi.org/10.34172/PS.2020.63
Li, J., Hao, Y., Li, H., Xia, M., Sun, X., & Wang, L. (2009). Direct synthesis of CeO2/SiO2 mesostructured composite materials via sol-gel process. Microporous and Mesoporous Materials, 120(3), 421–425. https://doi.org/10.1016/j.micromeso.2008.12.014
Ma, Q., Li, Y., & Su, X. (2015). Silica-nanobead-based sensors for analytical and bioanalytical applications. Trends in Analytical Chemistry, 74, 130–145. https://doi.org/10.1016/j.trac.2015.06.006
Maharani, D. K., & Hidayah, R. (2015). PREPARATION AND CHARACTERIZATION OF CHITOSAN-ZnO/Al2O3 COMPOSITE. Molekul, 10(3500), 9–18.
Nguyen, H. T. T., Ohtani, M., & Kobiro, K. (2019). One-pot synthesis of SiO2‒CeO2 nanoparticle composites with enhanced heat tolerance. Microporous and Mesoporous Materials, 273, 35–40. https://doi.org/10.1016/j.micromeso.2018.06.043
Perincek, O., & Colak, M. (2013). Use of Experimental Box-Behnken Design for the Estimation of Interactions Between Harmonic Currents Produced by Single Phase Loads. International Journal of Engineering Research and Applications, 3(2), 158–165.
Phanichphant, S., Nakaruk, A., & Channei, D. (2016). Photocatalytic activity of the binary composite CeO2/SiO2 for degradation of dye. Applied Surface Science Journal, 387, 214–220. https://doi.org/10.1016/j.apsusc.2016.06.072
Pujar, M. S., Hunagund, S. M., Desai, V. R., Patil, S., & Sidarai, A. H. (2018). One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method. AIP Conference Proceedings, 1942(April), 1–6. https://doi.org/10.1063/1.5028657
Radojković, M., Zeković, Z., Jokić, S., & Vidović, S. (2012). Determination of optimal extraction parameters of mulberry leaves using response surface methodology (RSM). Romanian Biotechnological Letters, 17(3), 7295–7308.
Reus-Chavarría, E., Martínez-Vieyra, I., Salinas-Nolasco, C., Chávez-Piña, A. E., Méndez-Méndez, J. V., López-Villegas, E. O., Sosa-Peinado, A., & Cerecedo, D. (2019). Enhanced expression of the Epithelial Sodium Channel in neutrophils from hypertensive patients. Biochimica Biophysica Acta - Biomembranes, 1861(2), 387–402. https://doi.org/10.1016/j.bbamem.2018.11.003
Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H., & Morimoto, S. (2018). Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. Journal of Natural Medicines, 72(1), 32–42. https://doi.org/10.1007/s11418-017-1144-z
Sari, A. K., Hartati, Y. W., Gaffar, S., Anshori, I., Hidayat, D., & Wiraswati, H. L. (2022). The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP. Journal of Electrochemical Science and Engineering, 12(1), 219–235. https://doi.org/10.5599/jese.1206
Scholz, F. (2010). Guide to experiments and applications : Pulse Voltammetry. In Electroanalytical Methods. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02915-8
Sedlak, S. M., Schendel, L. C., Gaub, H. E., & Bernardi, R. C. (2020). Streptavidin/biotin: Tethering geometry defines unbinding mechanics. Science Advances, 6(13), 1–11. https://doi.org/10.1126/sciadv.aay5999
Siangproh, W., Dungchai, W., Rattanarat, P., & Chailapakul, O. (2011). Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: A review. Analytica Chimica Acta, 690(1), 10–25. https://doi.org/10.1016/j.aca.2011.01.054
Sofiatin, Y., & MA Roesli, R. (2018). Detection of Urinary Epithelial Sodium Channel (ENaC) Protein. American Journal of Clinical Medicine Research, 6(2), 20–23. https://doi.org/10.12691/ajcmr-6-2-1
Tan, H., Ma, L., Guo, T., Zhou, H., Chen, L., Zhang, Y., Dai, H., & Yu, Y. (2019). A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B 1. Analytica Chimica Acta, 1068(2), 87–95. https://doi.org/10.1016/j.aca.2019.04.014
Vert, M., Doi, Y., Hellwich, K., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications ( IUPAC Recommendations 2012 )*. Pure and Applied Chemistry, 84(2), 377–410.
Walcarius, A. (2018). Silica-based electrochemical sensors and biosensors: Recent trends. Current Opinion in Electrochemistry, 10, 88–97. https://doi.org/10.1016/j.coelec.2018.03.017
Wang, J., Guo, J., Zhang, J., Zhang, W., & Zhang, Y. (2017). RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosensors and Bioelectronics, 95, 100–105. https://doi.org/10.1016/j.bios.2017.04.014
Wyantuti, S., Harahap, F. W., Hartati, Y. W., & Firdaus, M. L. (2021). Application of Plackett-Burman and Box-Behnken experimental designs in differential voltammetry for determining Gadolinium concentration. Journal of Physics: Conference Series, 1731(1). https://doi.org/10.1088/1742-6596/1731/1/012017
Xu, W., Huang, Y., Li, L., Sun, Z., Shen, Y., Xing, J., Li, M., Su, D., & Liang, X. (2016). Hyperuricemia induces hypertension through activation of renal epithelial sodium channel (ENaC). Metabolism: Clinical and Experimental, 65(3), 73–83. https://doi.org/10.1016/j.metabol.2015.10.026
Xunwen, S., Liqun, Z., Weiping, L., Huicong, L., & Hui, Y. (2020). The synthesis of monodispersed M-CeO2/SiO2 nanoparticles and formation of UV absorption coatings with them. Royal Society of Chemistry, 10, 4554–4560. https://doi.org/10.1039/c9ra08975f
Zakiyyah, S. N., Eddy, D. R., Firdaus, M. L., Subroto, T., & Hartati, Y. W. (2022). Screen-printed carbon electrode/natural silica-ceria nanocomposite for electrochemical aptasensor application. Journal of Electrochemical Science and Engineering, 00(0), 1–18. https://doi.org/10.5599/jese.1455
DOI: 10.15408/jkv.v9i1.27493
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Yeni Wahyuni Hartati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.