Characteristics and Antibacterial Activity of Apis and Trigona Honey Types against Escherichia coli and Staphylococcus Aureus on Various Heating

La Ode Sumarlin, Nurul Amilia, Anna Muawanah, Nadya Uswatun Hasanah, Hajar Hajar

Abstract


Heating in honey processing can inhibit fermentation, crystallization, and the growth of microorganisms, such as bacteria. However, the effect of the honey heating process on the properties of honey and its antibacterial activity has not been further studied. Therefore, in this study, the properties of honey of both Apis and Trigona species from Bogor, Kalimantan, Sulawesi, Sumatra, and Lombok, were tested. The properties of honey, including water content, acidity, reducing sugar, 5-hydroxymethylfurfural (HMF), and diastase enzyme activity, were tested at heating temperatures 50, 70, and 90 °C. The antibacterial activity was determined using the disc method against Escherichia coli and Staphylococcus aureus. The results showed that the average water content and acidity values decreased after heating. However, the values met the SNI quality requirements with a water content value of < 22% and the acidity value not exceeding 50 mL NaOH 0.1 N/kg in the Apis and Trigona types of honey. The reduced sugar content fluctuated after heating all samples, and the average HMF level of honey increased after heating. However, the activity of the diastase enzyme decreased, although the value was still within the SNI standard value. The selected honey samples of the Apis and Trigona types were active in inhibiting the growth of Staphylococcus aureus but were not active against Escherichia coli.


Keywords


Antibacterial; Apis; Escherichia coli; Staphylococcus aureus; Trigona

References


Ariandi & Khaerati. (2017). Uji aktivitas enzim diastase, Hidroksimetilfurfural (HMF), kadar air pada madu hutan Battang. Prosiding Seminar Hasil Penelitian (SNP2M), pp. 1-4.

Akuba, J., & Pakaya, M. S. (2020). Uji aktivitas enzim diastase madu hutan mentah Gorontalo sebagai imunomodulator. Pharmaceutical Journal of Islamic Pharmacy, 4(2), 30–34. http://dx.doi.org/10.21111/pharmasipha.v4i2.4852.

Aseron, L. R., Atega, K. M., Beloso, T. B., Malacad, C. A., & Millena, C. M. (2019). Comparative analysis of the antibacterial properties of honey from Trigona biroi (Stingless bee) and Apis mellifera (Western honey bee) against Staphylococcus aureus strains. [Research output, De La Salle Medical and Health Sciences Institute]. GreenPrints. https://greenprints.dlshsi.edu.ph/grade_12/62/

Blidi, S., Gotsiou, P., Loupassaki, S., Grigorakis, S., & Calokerinos, A. C. (2017). Effect of Thermal Treatment on the Quality of Honey Samples from Crete. Advences in Food Science and Engineering, 1(3), 1–9. https://doi.org/10.22606/afse.2017.11001

Badan Standarisasi Nasional Indonesia (BSN). (2013). SNI-01-3545-2013: Madu. Jakarta: Badan Standarisasi Nasional Indonesia.

Budiwijono, T. (2008). Evaluasi kadar gula pereduksi, derajat keasaman dan identifikasi enzim pada madu yang dipanaskan dengan oven udara kering sistem konveksi. Universitas Muhammadiyah Malang. http://publikasi.umm.ac.id.

Dan, P. N. S. M., Omar, S., & Ismail, W. I. W. (2018). Physicochemical Analysis of Several Natural Malaysian Honeys and Adulterated Honey. IOP Conference Series: Materials Science and Engineering, 440 (1): 5–10.

Dewi, A. D. R. & Susanto, W. H. (2013). Pembuatan lempok pisang (kajian jenis pisang dan konsentrasi madu). Jurnal Pangan Dan Agroindustri, 1(1), 101–114.

Ewnetu, Y., Lemma, W., & Birhane, N. (2013). Antibacterial effects of Apis mellifera and stingless bees honeys on susceptible and resistant strains of Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae in Gondar, Northwest Ethiopia. BMC Complementary and Alternative Medicine, 13,269. http://www.biomedcentral.com/1472-6882/13/269

Elliza, N. (2010). Pengaruh pemberian madu terhadap bakteri Staphylococcus aureus dan Escherichia coli. [Skripsi], UIN Syarif Hidayatullah Jakarta.

Enggar, M. D. (2018). Karakteristik Madu Hutan Berdasarkan Jenis Pakan Lebah di Propinsi Riau. Inspirasi Kuok, Balai Penelitian Teknologi Serat Tanaman Hutan. 1(1), p22-27.

Evahelda, Pratama, F. Malahayati, N., & Santoso, B. (2015). Uji aktivitas enzim diastase , kadar gula pereduksi dan kadar air pada madu bangka dan madu kemasan yang dipasarkan di kota Palembang. Prosiding Seminar Nasional Lahan Suboptima, pp. 1-6, 2015.

Gela, A., Hora, Z. A., Kebebe, D., & Gebresilassie, A. (2021). Physico-chemical characteristics of honey produced by stingless bees (Meliponula beccarii) from West Showa zone of Oromia Region, Ethiopia. Heliyon, 7(1), e05875. https://doi.org/10.1016/j.heliyon.2020.e05875.

Gomes, F. N. D. C., Pereira, L. R., Ribeiro, N. F. P. &. Souza, M. M. V. M. (2015). Production of 5-Hydroxymethylfurfural (Hmf) Via Fructose Dehydration: Effect of Solvent And Salting-Out. Brazilian Journal of Chemical Engineering, 32(1), 119 – 126. dx.doi.org/10.1590/0104-6632.20150321s00002914.

Hasan, S. H. (2013). Effect of Storage and Processing Temperatures on Honey Quality. Journal of Babylon University. 21(6).

Kesić, A., Zaimović, I., Ibrišimović-Mehmedinović, N., & Šestan, A. (2017). The Influence of Thermal Treatment on the Concentration of HMF in Honey. International Journal of Environmental Chemistry, 1(1), 14–18. https://doi.org/10.11648/j.ijec.20170101.13.

Khasanah, R. Parman, S. & Suedy, S. W. A. (2017). Kualitas madu lokal dari lima wilayah di Kabupaten Wonosobo. Jurnal Biologi, 6(1), 29-37.

Kupiainen, L., Ahola, J., & Tanskanen, J. (2011). Kinetics of glucose decomposition in formic acid. Chemical Engineering Research and Design, 89(12), 2706–2713. https://doi.org/10.1016/j.cherd.2011.06.005

Koesprimadisari, A. R., Arrisujaya, D. & Syafdaningsih, R. (2016). Uji kandungan Hidroksimetilfurfural (HMF) sebagai parameter kualitas madu. Jurnal Sains Natural Universitas Nusa Bangsa, 2(2), 44-51.

Kowalski S. (2013). Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing. Food chemistry, 141(2), 1378 – 1382. https://doi.org/10.1016/j.foodchem.2013.04.025.

Lutpiatina, L. (2015). Efektivitas Ekstrak Propolis Lebah Kelut (Trigona spp) dalam Menghambat Pertumbuhan Salmonella typhi, Staphylococcus aureus dan Candida albicans. Jurnal Skala Kesehatan, 6(1), 1–8. https://doi.org/10.31964/jsk.v6i1.32

Maria, Aziz, H., & Nuh, M. (2021). Analisi Waktu Pemasakan dalam Proses Pembuatan Permen Madu Trigona biroi dan Apis dorsata. Jurnal Penelitian Kehutanan Bonita, 5(1), 1–15. http://dx.doi.org/10.55285/bonita.v3i1.771

Nurmala, D., P. (2020). Pengaruh pemanasan menggunakan evaporator vakum terhadap fisikokimia madu karet, madu rambutan dan madu kayu putih. [Tesis]. Universitas Brawijaya.

Nadhilla, N., F. (2014). The activity of antibacterial agent of honey against Staphylococcus aureus. J Majority, 3(7), 94–101.

Nurhayati, L., S. Yahdiyani, N. & Hidayatulloh, A. (2020). Perbandingan pengujian aktivitas antibakteri starter yogurt dengan metode difusi sumuran dan metode difusi cakram. Jurnal Teknologi Hasil Peternakan, 1(2), 41-46. https://doi.org/10.24198/jthp.v1i2.27537.

Putri, A., P. & Asparini, R., R. (2017). Peran madu dalam menghambat pertumbuhan bakteri pada luka bakar. Journal of Saintika Medika, 13(2), 63-68. https://doi.org/10.22219/sm.v13i2.5413.

Prabowo, S. Yuliani, Prayitno, Agus, Y., Lestari, K., & Kusevara, A. (2019). Penentuan karakteristik fisiko-kimia beberapa jenis madu menggunakan metode konvensional dan metode kimia. Journal of Tropical AgriFood, 2(1), 66-73. http://dx.doi.org/10.35941/jtaf.1.2.2019.2685.66-73.

Prestianti, I., Baharuddin, M., & Sappewali, S. (2018). Uji Aktivitas Antibakteri Ekstrak Sarang Lebah Hutan (Apis dorsata) terhadap Pertumbuhan Staphylococcus aureus, Escherichia coli dan Pseudomonas aeruginosa. ALCHEMY Jurnal Penelitian Kimia, 14(2), 313. https://doi.org/10.20961/alchemy.14.2.13028.314-322

Rio, Y. B. P., Aziz, D., & Asterina. (2012). Perbandingan efek antibakteri madu asli Sikabu dengan madu Lubuk Minturun terhadap Escherichia coli dan Staphylococcus aureus secara in vitro. Jurnal Kesehatan Andalas, 1(2), 59–62. https://doi.org/10.25077/jka.v1i2.15.

Sakac, N., & Sak-bosnar, M. (2012). A rapid method for the determination of honey diastase activity. Talanta, 93, 135–138. https://doi.org/10.1016/j.talanta.2012.01.063

Samborska, K. & Czelejewska, M. (2012). The Influence of thermal treatment and spray drying on the physicochemical properties of polish honeys. Journal of Food Processing and Preservation, 38(1), 413–419. https://doi.org/10.1111/j.1745-4549.2012.00789.x

Savitri, N. P. T., Hastuti, E. D., & Suedy, S. W. A. (2017). Kualitas madu lokal dari beberapa wilayah di Kabupaten Temanggung. Buletin Anatomi dan Fisiologi, 2(1), 58-66. https://doi.org/10.14710/baf.2.1.2017.58-66.

Sjamsiah, S., Sikanna, R., Rifkah.A, A., & Saleh, A. (2018). Penentuan Sifat Fisikokimia Madu Hutan (Apis dorsata) Sulawesi Selatan. Al-Kimia, 6(2), 191-199. https://doi.org/10.24252/al-kimia.v6i2.6668.

Sousa, J. M., Souza, E. L., Marques, G., Benassi, M. D., Gullón, B., Pintado, M. M., & Magnani, M. (2016). Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. Lwt - Food Science and Technology, 65, 645-651. https://doi.org/10.1016/j.lwt.2015.08.058.

Sumarlin, L. O., Ernita, N., Afandi, F. R., & Fathoni, A. (2021). Identification of Active Chemical Compounds of Honey from Some Regions in Indonesia. Science and Technology Indonesia, 6(2), 74–84. https://doi.org/10.26554/sti.2021.6.2.74-84.

Sumarlin, L. O., Hendrawati, Bahalwan, I., Farhan, R. A., & Adawiyah. (2019). Anticancer Activity of Honey Extract from Indonesia By A549 Cell Inhibition In Vitro. Ecology, Environment and Conservation, 25(3), 1196-1202.

Sumarlin, L. O., Tjachja, A., Octavia, R., & Ernita, N. (2018). Aktivitas Antioksidan Ekstrak Metanol Madu Cair dan Madu Bubuk Lokal Indonesia. Al-Kimia, 6(1), 10-23. https://doi.org/10.24252/al-kimia.v6i1.4333.

Tester, R. F. (2002). Starch: The Polysaccharide Frections In P.J. Frazier, P. Richmond and A.M. Donald. Starch,Structure and Functionally. Royal Society of Chemistry, 1(6), 163–171.

Turkmen, N. Sari, F. Poyrazoglu, E. S., & Velioglu, Y., S. (2006). Effects of prolonged heating on antioxidant activity and colour of honey. Food Chemistry, 95(4), 653-657. https://doi.org/10.1016/j.foodchem.2005.02.004.

Wulandari, D. D. (2017). Analisa Kualitas Madu (Keasaman, Kadar Air, dan Kadar Gula Pereduksi) Berdasarkan Perbedaan Suhu Penyimpanan. Jurnal Kimia Riset, 2(1), 16–22. https://doi.org/10.20473/jkr.v2i1.3768.

Zarei, M., Fazlara, A., & Tulabifard, N. (2019). Effect of thermal treatment on physicochemical and antioxidant properties of honey. Heliyon, 5(6), e01894. https://doi.org/10.1016/j.heliyon.2019.e01894.


Full Text: PDF

DOI: 10.15408/jkv.v8i2.27241

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 La Ode Sumarlin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.