The Performance and Characterization of Polymeric Inclusion Membranes (PIMs) Containing 2-Nitro Phenyl Octyl Ether as Plasticizer on Phosphate Transport

Hanifah Nur Aini, Barlah Rumhayati, Qonitah Fardiyah, Adam Wiryawan, Ulfa Andayani, Anisah Nabilah Azzah

Abstract


Polymer Inclusion Membranes (PIMs) have been fabricated for diffusive passive sample layers. A study of various concentrations of plasticizers and characterization of PIM performance on phosphate transport has been carried out. The composition of PIM consisted of cellulose triacetate (CTA) as the base polymer, Aliquot 336-Cl as a carrier, and 2-Nitro phenyl octyl ether (2-NPOE) as a plasticizer. The plasticizer concentration varied between 0 and 10% (w/w). The performance of PIM on phosphate transport was studied with a passive sampler filled with 15 mL 0.1 M NaCl as the internal phase. The passive samplers were deployed into the bulk phase of a phosphate solution of 0.6 mg/L for 0-48 hours. The phosphate concentration in the passive sampler was determined using the visible spectrophotometry method at 691 nm (in the bulk phase) and 710 nm (in the internal phase). PIMs were characterized for stress-strain, contact angle, surface morphology, and cross-section. The sampling rate of phosphate, phosphate time-weighted concentration (CTWA), and accuracy of phosphate measurement was also determined. The results showed that PIM A (0% w/w 2-NPOE) resulted in a sampling rate of 0.0005±0.0002 (L/hour), CTWA 0.09 mg/L, and an accuracy of 28.38%. PIMs B (10% w/w 2-NPOE) resulted in a sampling rate of 0.0003±0.0001 (L/hour), CTWA 0.18 mg/L, and an accuracy of 52.15%. PIMs A and B have a contact angle of 17.02⁰ and 18.71⁰, respectively. It means that these PIMs are hydrophilic membranes. In addition, PIMs B was more elastic than PIMs A, showed by the tensile strength of PIMs B was 31.05 MPa compared with PIMs A's tensile strength (29.01 MPa). PIMs A and B have no pores, as shown by surface morphology using SEM. However, based on the cross-section area, PIMs A showed a break section instead of PIMs B, which indicates that PIMs B is more elastic than PIMs A.


Keywords


2-nitro phenyl octyl ether; phosphate transport; polymeric inclusion membranes (PIMs)

References


Ait K. I., Mitiche, L., Sahmoune, A., & Fontàs, C. (2018). An Efficient Polymer Inclusion Membrane-Based Device for Cd Monitoring in Seawater. Membranes, 8(3), 61.https://doi.org/10.3390/membranes8030061

Almeida, M. I. G. S., Cattrall, R. W., & Kolev, S. D. (2017). Polymer inclusion membranes (PIMs) in chemical analysis—A review. Analytica Chimica Acta, 987, 1–14. https://doi.org/10.1016/j.aca.2017.07.032

Almeida, M. I. G. S., Silva, A. M. L., Coleman, R. A., Pettigrove, V. J., Cattrall, R. W., & Kolev, S. D. (2016). Development of a passive sampler based on a polymer inclusion membrane for total ammonia monitoring in freshwaters. Analytical and Bioanalytical Chemistry, 408(12), 3213–3222. https://doi.org/10.1007/s00216-016-9394-2

Bahrami, S., Dolatyari, L., Shayani-Jam, H., Yaftian, M. R., & Kolev, S. D. (2021). On the Potential of a Poly(Vinylidenefluoride-Co-hexafluoropropylene) Polymer Inclusion Membrane Containing Aliquat® 336 and Dibutyl Phthalate for V(V) Extraction from Sulfate Solutions [Preprint]. CHEMISTRY. https://doi.org/10.20944/preprints202111.0494.v1

Benavente, J., Romero, V., Vázquez, M., Anticó, E., & Fontàs, C. (2018). Electrochemical Characterization of a Polymer Inclusion Membrane Made of Cellulose Triacetate and Aliquat 336 and Its Application to Sulfonamides Separation. Separations, 5(1), 5. https://doi.org/10.3390/separations5010005

Bennett, E. M., & Schipanski, M. E. (2013). The Phosphorus Cycle. In Fundamentals of Ecosystem Science (pp. 159–178). Elsevier. https://doi.org/10.1016/B978-0-08-091680-4.00008-1

Benosmane, N., Boutemeur, B., Hamdi, S. M., & Hamdi, M. (2022). Removal of methylene blue dye from aqueous solutions using polymer inclusion membrane technology. Applied Water Science, 12(5), 104. https://doi.org/10.1007/s13201-022-01627-1

Bonggotgetsakul, Y., Cattrall, R., & Kolev, S. (2015). Extraction of Gold(III) from Hydrochloric Acid Solutions with a PVC-based Polymer Inclusion Membrane (PIM) Containing Cyphos® IL 104. Membranes, 5(4), 903–914. https://doi.org/10.3390/membranes5040903

Braun, J. L., & Kadla, J. F. (2013). CTA III: A Third Polymorph of Cellulose Triacetate. Journal of Carbohydrate Chemistry, 32(2), 120–138. https://doi.org/10.1080/07328303.2012.752493

Casadellà, A., Schaetzle, O., Nijmeijer, K., & Loos, K. (2016). Polymer Inclusion Membranes (PIM) for the Recovery of Potassium in the Presence of Competitive Cations. Polymers, 8(3), 76. https://doi.org/10.3390/polym8030076

Cristóvão, M. B., Bento-Silva, A., Bronze, M. R., Crespo, J. G., & Pereira, V. J. (2021). Detection of anticancer drugs in wastewater effluents: Grab versus passive sampling. Science of The Total Environment, 786, 147477. https://doi.org/10.1016/j.scitotenv.2021.147477

Djamila, Z., Omar, A., Mourad, A., & Hac, K. (2011). Polymer inclusion membrane: Effect of the chemical nature of the polymer and plasticizer on the metallic ions transference. 10.

Feng, Z., Wang, N., He, M., Yang, L., Wang, Y., & Sun, T. (2018). Simultaneous sampling of dissolved orthophosphate and ammonium in freshwaters using diffusive gradients in thin films with a mixed binding phase. Talanta, 186, 176–182. https://doi.org/10.1016/j.talanta.2018.04.045

Garcia-Rodríguez, A., Fontàs, C., Matamoros, V., Almeida, M. I. G. S., Cattrall, R. W., & Kolev, S. D. (2016). Development of a polymer inclusion membrane-based passive sampler for monitoring of sulfamethoxazole in natural waters. Minimizing the effect of the flow pattern of the aquatic system. Microchemical Journal, 124, 175–180. https://doi.org/10.1016/j.microc.2015.08.017

Garnier, A., Bancon-Montigny, C., Delpoux, S., Spinelli, S., Avezac, M., & Gonzalez, C. (2020). Study of passive sampler calibration (Chemcatcher®) for environmental monitoring of organotin compounds: Matrix effect, concentration levels and laboratory vs in situ calibration. Talanta, 219, 121316. https://doi.org/10.1016/j.talanta.2020.121316

Gibbons, W. S., & Kusy, R. P. (1998). Influence of plasticizer configurational changes on the dielectric characteristics of highly plasticized poly(vinyl chloride). Polymer, 39(14), 3167–3178. https://doi.org/10.1016/S0032-3861(97)10001-5

Godoy, R. F. B., Radomski, F. A. D., Guerra, B. de la C., & Kuroda, C. Y. (2019). Eutrophication: A threat to freshwater reservoirs and human health. Multidisciplinary Reviews, 2(1), e2019007. https://doi.org/10.29327/multi.2019007

Górecki, T., & Namienik, J. (2002). Passive sampling. TrAC - Trends in Analytical Chemistry, 21(4), 276–291. https://doi.org/10.1016/S0165-9936(02)00407-7

Govindappa, H., Bhat, M. P., Uthappa, U. T., Sriram, G., Altalhi, T., Prasanna Kumar, S., & Kurkuri, M. (2022). Fabrication of a novel polymer inclusion membrane from recycled polyvinyl chloride for the real-time extraction of arsenic (V) from water samples in a continuous process. Chemical Engineering Research and Design, 182, 145–156. https://doi.org/10.1016/j.cherd.2022.03.052

Hazrati, K. Z., Sapuan, S. M., Zuhri, M. Y. M., & Jumaidin, R. (2021). Effect of plasticizers on physical, thermal, and tensile properties of thermoplastic films based on Dioscorea hispida starch. International Journal of Biological Macromolecules, 185, 219–228. https://doi.org/10.1016/j.ijbiomac.2021.06.099

Jeong, Y. (2020). Quantitative evaluation of polyethersulfone and polytetrafluoroethylene membrane sorption in a polar organic chemical integrative sampler (POCIS). Environmental Pollution, 10.

Jiao, W., Chen, W., Chang, A. C., & Page, A. L. (2012). Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environmental Pollution, 168, 44–53. https://doi.org/10.1016/j.envpol.2012.03.052

Kagaya, S., Ryokan, Y., Cattrall, R. W., & Kolev, S. D. (2012). Stability studies of poly(vinyl chloride)-based polymer inclusion membranes containing Aliquat 336 as a carrier. Separation and Purification Technology, 101, 69–75. https://doi.org/10.1016/j.seppur.2012.09.007

Keskin, B., Zeytuncu-Gökoğlu, B., & Koyuncu, I. (2021a). Polymer inclusion membrane applications for transport of metal ions: A critical review. Chemosphere, 279. https://doi.org/10.1016/j.chemosphere.2021.130604

Keskin, B., Zeytuncu-Gökoğlu, B., & Koyuncu, I. (2021b). Polymer inclusion membrane applications for transport of metal ions: A critical review. Chemosphere, 279, 130604. https://doi.org/10.1016/j.chemosphere.2021.130604

Kiswandono, A. A., Siswanta, D., Aprilita, N. H., Santosa, S. J., & Hayashita, T. (2013). Extending The Life Time Of Polymer Inclusion Membrane Containing Copoly(Eugenol-DVB) As Carrier For Phenol Transport. Indonesian Journal of Chemistry, 13(3), 254–261. https://doi.org/10.22146/ijc.21285

Kotsilkova, R., Borovanska, I., Todorov, P., Ivanov, E., Menseidov, D., Chakraborty, S., & Bhattacharjee, C. (2018). Tensile and Surface Mechanical Properties of Polyethersulphone (PES) and Polyvinylidene Fluoride (PVDF) Membranes. Journal of Theoretical and Applied Mechanics, 48(3), 85–99. https://doi.org/10.2478/jtam-2018-0018

Kreuzeder, A., Santner, J., Zhang, H., Prohaska, T., & Wenzel, W. W. (2015). Uncertainty Evaluation of the Diffusive Gradients in Thin Films Technique. Environmental Science & Technology, 49(3), 1594–1602. https://doi.org/10.1021/es504533e

Lima, M. F., Pacheco, W. F., & Cassella, R. J. (2019). Evaluation of a semi-permeable membrane device (SPMD) for passive sampling of solar filters from swimming pool waters and determination by HPLC-DAD. Journal of Chromatography A, 1600, 23–32. https://doi.org/10.1016/j.chroma.2019.04.036

Maiphetlho, K., Chimuka, L., Tutu, H., & Richards, H. (2021). Technical design and optimisation of polymer inclusion membranes (PIMs) for sample pre-treatment and passive sampling – A review. Science of The Total Environment, 799, 149483. https://doi.org/10.1016/j.scitotenv.2021.149483

Marcilla, A., & Beltrán, M. (2012). Mechanisms Of Plasticizers Action. In Handbook of Plasticizers (pp. 119–133). Elsevier. https://doi.org/10.1016/B978-1-895198-50-8.50007-2

McKay, S., Tscharke, B., Hawker, D., Thompson, K., O’Brien, J., Mueller, J. F., & Kaserzon, S. (2020). Calibration and validation of a microporous polyethylene passive sampler for quantitative estimation of illicit drug and pharmaceutical and personal care product (PPCP) concentrations in wastewater influent. Science of The Total Environment, 704, 135891. https://doi.org/10.1016/j.scitotenv.2019.135891

Monroy-Barreto, M., Bautista-Flores, A. N., Munguia Acevedo, N. M., de San Miguel, E. R., & de Gyves, J. (2021). Selective Palladium(II) Recovery Using a Polymer Inclusion Membrane with Tris(2-ethylhexyl) Phosphate (TEHP). Experimental and Theoretical Study. Industrial & Engineering Chemistry Research, 60(8), 3385–3396. https://doi.org/10.1021/acs.iecr.0c05074

Mwakalesi, A. J., & Potter, I. D. (2021). Targeting of cationic organic pesticide residues using polymer inclusion membranes containing anacardic acid from cashew nut shell liquid as a green carrier. Journal of Water Process Engineering, 43, 102222. https://doi.org/10.1016/j.jwpe.2021.102222

Nitti, F., Cendana, U. N., Cendana, U. N., & Hoque, B. (2021). Improving The Performance of Polymer Inclusion Membranes in Separation Process Using Alternative Base Polymers: A Review. Indonesian Journal Of Chemistry. 22(1). 284-302.https://doi.org/10.22146/ijc.68311

Nitti, F., Selan, O. T. E., Hoque, B., Tambaru, D., & Djunaidi, M. C. (2021). Improving the Performance of Polymer Inclusion Membranes in Separation Process Using Alternative Base Polymers: A Review. Indonesian Journal of Chemistry, 22(1), 284. https://doi.org/10.22146/ijc.68311

Rodríguez de San Miguel, E. (2022). Polymer Inclusion Membranes. Membranes, 12(2), 226. https://doi.org/10.3390/membranes12020226

Rumhayati, B., Wiryawan, A., Dinira, L., & Afifah, S. (2021). Fabrication and Characterization of Passive Sampler using Polymeric Inclusion Membrane (PIM) as Diffusion Layer for Phosphate Measurement. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 6(1), 29. https://doi.org/10.20961/jkpk.v6i1.49825

Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGrath, J. E., Paul, D. R., & Freeman, B. D. (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer, 54(18), 4729–4761. https://doi.org/10.1016/j.polymer.2013.05.075

Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M., & Sahari, J. (2015). Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers, 7(6), 1106–1124. https://doi.org/10.3390/polym7061106

Sedkaoui, Y., Abdellaoui, N., Arous, O., Lounici, H., Nasrallah, N., & Szymczyk, A. (2021). Elaboration and characterization of multilayer polymeric membranes: Effect of the chemical nature of polymers. Journal of Polymer Engineering, 41(2), 127–136. https://doi.org/10.1515/polyeng-2020-0165

Sellami, F., Kebiche-Senhadji, O., Marais, S., Couvrat, N., & Fatyeyeva, K. (2019). Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal of Cr(VI): Efficiency, stability and selectivity. Reactive and Functional Polymers, 139, 120–132. https://doi.org/10.1016/j.reactfunctpolym.2019.03.014

Sikorski, P., Wada, M., Heux, L., Shintani, H., & Stokke, B. T. (2004). Crystal Structure of Cellulose Triacetate I. Macromolecules, 37(12), 4547–4553. https://doi.org/10.1021/ma0498520

Soo, J. A. L., Makhtar, M. M. Z., Shoparwe, N. F., Otitoju, T. A., Mohamad, M., Tan, L. S., & Li, S. (2021). Characterization and Kinetic Studies of Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Inclusion Membrane for the Malachite Green Extraction. Membranes, 11(9), 676. https://doi.org/10.3390/membranes11090676

Souisa, M. (2011). Analisis Modulus Elastisitas dan Angka Poisson Bahan Dengan Uji Tarik. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 5(2), 9–14. https://doi.org/10.30598/barekengvol5iss2pp9-14

Tan, F., Wang, Y., Wang, Y., Ren, S., Cui, Y., & Xu, D. (2020). Ceria oxide nanoparticle-based diffusive gradients in thin films for in situ measurement of dissolved reactive phosphorus in waters and sewage sludge. Environmental Science and Pollution Research, 27(10), 11138–11146. https://doi.org/10.1007/s11356-019-07220-5

Upitis, A., Peterson, J., Lukey, C., & Nghiem, L. D. (2009). Metallic ion extraction using polymer inclusion membranes (PIMs): Optimising physical strength and extraction rate. Desalination and Water Treatment, 6(1–3), 41–47. https://doi.org/10.5004/dwt.2009.641

Wang, D., Hu, J., Li, Y., Fu, M., Liu, D., & Chen, Q. (2016). Evidence on the 2-nitrophenyl octyl ether (NPOE) facilitating Copper(II) transport through polymer inclusion membranes. Journal of Membrane Science, 501, 228–235. https://doi.org/10.1016/j.memsci.2015.12.013

Wilson, M., Qiu, Y., Yu, J., Lee, B. E., McCarthy, D. T., & Pang, X. (2022). Comparison of Auto Sampling and Passive Sampling Methods for SARS-CoV-2 Detection in Wastewater. Pathogens, 11(3), 359. https://doi.org/10.3390/pathogens11030359

Xu, L., Zeng, X., He, Q., Deng, T., Zhang, C., & Zhang, W. (2022). Stable ionic liquid-based polymer inclusion membranes for lithium and magnesium separation. Separation and Purification Technology, 288, 120626. https://doi.org/10.1016/j.seppur.2022.120626


Full Text: PDF

DOI: 10.15408/jkv.v8i2.27094

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Hanifah Nur Nur Aini, Barlah Rumhayati, Qonitah Fardiyah, Adam Wiryawan, Ulfa Andayani, Anisah Nabilah Azzah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.