Synthesis of Green Diesel from Palm Oil Using Nickel-based Catalyst: A Review

Isalmi Aziz, Purwantiningsih Sugita, Noviyan Darmawan, Adid Adep Dwiatmoko

Abstract


Petroleum is the primary energy that is generally used throughout the world. Its non-renewable nature and exhaust gas emissions that can damage the environment are a concern for developing environmentally friendly renewable energy. Green diesel is an alternative energy to replace diesel fuel (diesel) from petroleum which has the potential to be developed. The raw material in palm oil has great potential for development due to its relatively high production. Green diesel synthesis can be carried out using the catalytic deoxygenation method. The type of raw material, catalyst, and process conditions influences this method. The catalyst is the most influential factor in catalytic deoxygenation. Transition metal catalysts like nickel are inexpensive and have good catalytic activity like precious metals. Catalytic activity can be increased by modifying the catalyst components and optimizing the process. Modification of the catalyst can increase the surface area, Lewis and Bronsted sites, and crystal size so that the resulting green diesel can be maximized, such as Ni-Co, Ni-Zn, and Ni-Mo bimetallic catalysts.


Keywords


Green diesel, solar, catalytic deoxygenation, nikel, minyak sawit

References


Abdulkareem-Alsultan, G., Asikin-Mijan, N., Mansir, N., Lee, H. V., Zainal, Z., Islam, A., Taufiq-Yap, Y. H. (2019). Pyro-lytic de-oxygenation of waste cooking oil for green diesel production over Ag2O3-La2O3/AC nano-catalyst. In Journal of Analytical and Applied Pyrolysis (Vol. 137). Elsevier B.V. https://doi.org/10.1016/j.jaap.2018.11.023

Adriawan, A. M., Hartanto, R. R., Novizar, A., Aryani, D., Syarifudin, S., Saputra, M. Y. (2020). Statistik Minyak dan Gas Bumi Oil and Gas Statistics. Direktorat Jenderal minyak dan gas Bumi, Kemeterian Energi dan sumber daya Mineral.

Ameen, M., Azizan, M. T., Ramli, A., Yusup, S., Abdullah, B. (2020). The effect of metal loading over Ni/γ-Al2O3 and Mo/γ-Al2O3 catalysts on reaction routes of hydrodeoxygenation of rubber seed oil for green diesel production. Catalysis Today, 355, 51–64. https://doi.org/10.1016/j.cattod.2019.03.028

Ananikov, V. P. (2015). Nickel: The “spirited horse” of transition metal catalysis. ACS Catalysis, 5(3), 1964–1971. https://doi.org/10.1021/acscatal.5b00072

Anonim. (2020). Executive Summary pemutakhiran data dan neraca sumber daya mineral status 2020.

Arun, N., Nanda, S., Hu, Y., Dalai, A. K. (2021). Hydrodeoxygenation of oleic acid using γ-Al2O3 supported transition metallic catalyst systems: Insight into the development of novel FeCu/γ-Al2O3 catalyst. Molecular Catalysis, December 2020, 111526. https://doi.org/10.1016/j.mcat.2021.111526

Baharudin, K. B., Abdullah, N., Taufiq-Yap, Y. H., Derawi, D. (2020). Renewable diesel via solventless and hydrogen-free catalytic deoxygenation of palm fatty acid distillate. Journal of Cleaner Production, 274, 122850. https://doi.org/10.1016/j.jclepro.2020.122850

Baharudin, K. B., Taufiq-Yap, Y. H., Hunns, J., Isaacs, M., Wilson, K., Derawi, D. (2019). Mesoporous NiO/Al-SBA-15 catalysts for solvent-free deoxygenation of palm fatty acid distillate. Microporous and Mesoporous Materials, 276(October), 13–22. https://doi.org/10.1016/j.micromeso.2018.09.014

Bian, Z., Das, S., Wai, M. H., Hongmanorom, P., Kawi, S. (2017). A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane. ChemPhysChem, 18(22), 3117–3134. https://doi.org/10.1002/cphc.201700529

Cao, X., Long, F., Zhai, Q., Liu, P., Xu, J., Jiang, J. (2020). Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported Ni-MoOx catalyst and elucidation of the active phase. Renewable Energy, 162, 2113–2125. https://doi.org/10.1016/j.renene.2020.10.052

Chen, B. S., Zeng, Y. Y., Liu, L., Chen, L., Duan, P., Luque, R., Ge, R., Zhang, W. (2022). Advances in catalytic decarboxylation of bioderived fatty acids to diesel-range alkanes. Renewable and Sustainable Energy Reviews, 158(December 2020), 112178. https://doi.org/10.1016/j.rser.2022.112178

Chen, Jinlei, Wang, D., Luo, F., Yang, X., Li, X., Li, S., Ye, Y., Wang, D., Zheng, Z. (2022). Selective production of alkanes and fatty alcohol via hydrodeoxygenation of palmitic acid over red mud-supported nickel catalysts. Fuel, 314(September 2021), 122780. https://doi.org/10.1016/j.fuel.2021.122780

Chen, Jinlei, Zhu, Y., Li, W., Luo, F., Li, S., Li, X., Huang, Y., Zhang, A., Xiao, Z., Wang, D., Zheng, Z. (2021). Production of diesel-like hydrocarbons via hydrodeoxygenation of palmitic acid over Ni/TS-1 catalyst. Biomass and Bioenergy, 149(January), 106081. https://doi.org/10.1016/j.biombioe.2021.106081

Chen, Jixiang, Shi, H., Li, L., Li, K. (2014). Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts. Applied Catalysis B: Environmental, 144, 870–884. https://doi.org/10.1016/j.apcatb.2013.08.026

Chen, Y., Li, X., Liu, S., Zhang, W., Wang, Q., Zi, W. (2020). Effects of metal promoters on one-step Pt/SAPO-11 catalytic hydrotreatment of castor oil to C8-C16 alkanes. Industrial Crops and Products, 146(January), 112182. https://doi.org/10.1016/j.indcrop.2020.112182

de Barros, D. M., de Rezende, J. B., Pasa, D. M. D. V. (2020). Deoxygenation of Macauba acid oil over Co-based catalyst supported on activated biochar from Macauba endocarp: A potential and sustainable route for green diesel and biokerosene production. Fuel, 269(January), 117253. https://doi.org/10.1016/j.fuel.2020.117253

De Oliveira, B. F. H., De França, L. F., Corrêa, N. C. F., Da Paixão Ribeiro, N. F., Velasquez, M. (2021). Renewable diesel production from palm fatty acids distillate (Pfad) via deoxygenation reactions. Catalysts, 11(9), 1–16. https://doi.org/10.3390/catal11091088

Di Vito Nolfi, G., Gallucci, K., Rossi, L. (2021). Green diesel production by catalytic hydrodeoxygenation of vegetables oils. International Journal of Environmental Research and Public Health, 18(24). https://doi.org/10.3390/ijerph182413041

Douvartzides, S. L., Charisiou, N. D., Papageridis, K. N., Goula, M. A. (2019). Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies, 12(5). https://doi.org/10.3390/en12050809

Dwiratna, B., Soebagjo, S. (2015). Pengembangan Katalis Berbasis NiMo Alumina untuk Reaksi HidrodeoksigenasiMinyak nabati menjadi Bioavtur. Jurnal Energi Dan Lingkungan (Enerlink), 11(2), 75–80. https://doi.org/10.29122/elk.v11i2.1580

Falabella, S., Costa, C., Peixoto Gimenes Couto, M. A., de Almeida Azevedo, D., Filho, J. F. S. de C. (2021). Conversion of residual palm oil into green diesel and biokerosene fuels under sub-and supercritical conditions employing raney nickel as catalyst. Catalysts, 11(8). https://doi.org/10.3390/catal11080995

Gamal, M. S., Asikin-Mijan, N., Khalit, W. N. A. W., Arumugam, M., Izham, S. M., Taufiq-Yap, Y. H. (2020). Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Processing Technology, 208(July). https://doi.org/10.1016/j.fuproc.2020.106519

Guo, C., Rao, K. T. V., Yuan, Z., He, S. (Quan), Rohani, S., Xu, C. (Charles). (2018). Hydrodeoxygenation of fast pyrolysis oil with novel activated carbon-supported NiP and CoP catalysts. Chemical Engineering Science, 178, 248–259. https://doi.org/10.1016/j.ces.2017.12.048

Gurney, K. R., Song, Y., Liang, J., Roest, G. (2020). Toward accurate, policy-relevant fossil fuel CO2emission landscapes. Environmental Science and Technology, 54(16), 9896–9907. https://doi.org/10.1021/acs.est.0c01175

Hachemi, I., Kumar, N., Mäki-Arvela, P., Roine, J., Peurla, M., Hemming, J., Salonen, J., Murzin, D. Y. (2017). Sulfur-free Ni catalyst for production of green diesel by hydrodeoxygenation. Journal of Catalysis, 347, 205–221. https://doi.org/10.1016/j.jcat.2016.12.009

Han, F., Guan, Q., Li, W. (2015). Deoxygenation of methyl palmitate over SiO2-supported nickel phosphide catalysts: effects of pressure and kinetic investigation. RSC Advances, 5(130), 107533–107539. https://doi.org/10.1039/c5ra22973a

Hasibuan, H. A. (2012). Study on Characteristics of Indonesian Palm Kernel Oil and Its Fractionation Products. Jurnal Standarisasi, 14(2), 98–104.

Hongloi, N., Prapainainar, P., Prapainainar, C. (2021). Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts. Molecular Catalysis, January, 111696. https://doi.org/10.1016/j.mcat.2021.111696

Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Khanali, M., Demirbas, A. (2018). A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Conversion and Management, 174(June), 579–614. https://doi.org/10.1016/j.enconman.2018.08.050

Istadi, I., Riyanto, T., Buchori, L., Anggoro, D. D., Pakpahan, A. W. S., Pakpahan, A. J. (2021). Biofuels production from catalytic cracking of palm oil using modified hy zeolite catalysts over a continuous fixed bed catalytic reactor. International Journal of Renewable Energy Development, 10(1), 149–156. https://doi.org/10.14710/ijred.2021.33281

Jeon, K. W., Park, H. R., Lee, Y. L., Kim, J. E., Jang, W. J., Shim, J. O., Roh, H. S. (2022). Deoxygenation of non-edible fatty acid for green diesel production: Effect of metal loading amount over Ni/MgO–Al2O3 on the catalytic performance and reaction pathway. Fuel, 311(July 2021), 122488. https://doi.org/10.1016/j.fuel.2021.122488

Jeong, H., Shin, M., Jeong, B., Jang, J. H., Han, G. B., Suh, Y. W. (2019). Comparison of activity and stability of supported Ni2P and Pt catalysts in the hydroprocessing of palm oil into normal paraffins. Journal of Industrial and Engineering Chemistry, 83, 189–199. https://doi.org/10.1016/j.jiec.2019.11.027

Jiraroj, D., Jirarattanapochai, O., Anutrasakda, W., Samec, J. S. M., Tungasmita, D. N. (2021). Selective decarboxylation of biobased fatty acids using a Ni-FSM-16 catalyst. Applied Catalysis B: Environmental, 291, 120050. https://doi.org/10.1016/j.apcatb.2021.120050

Jumaah, M. A., Mohamad Yusoff, M. F., Salimon, J., Bahadi, M. (2019). Physical Characteristics of Palm Fatty Acid Distillate. Journal of Chemical and Pharmaceutical Sciences, 12(01), 1–5. https://doi.org/10.30558/jchps.20191201001

Kamaruzaman, M. F., Taufiq-Yap, Y. H., Derawi, D. (2020). Green diesel production from palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt catalysts. Biomass and Bioenergy, 134(January), 105476. https://doi.org/10.1016/j.biombioe.2020.105476

Karavalakis, G., Jiang, Y., Yang, J., Durbin, T., Nuottimäki, J., Lehto, K. (2016). Emissions and Fuel Economy Evaluation from Two Current Technology Heavy-Duty Trucks Operated on HVO and FAME Blends. SAE International Journal of Fuels and Lubricants, 9(1), 177–190. https://doi.org/10.4271/2016-01-0876

Kementrian ESDM. (2019). Standar dan Mutu (Spesifikasi) Bahan Bakar Nabati (Biofuel) Jenis Biodiesel Sebagai Bahan Bakar Lain Yang Dipasarkan Di Dalam Negeri. In 189 K/10/Dje/2019 (p. 5).

Kiatkittipong, W., Phimsen, S., Kiatkittipong, K., Wongsakulphasatch, S., Laosiripojana, N., Assabumrungrat, S. (2013). Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil. Fuel Processing Technology, 116, 16–26. https://doi.org/10.1016/j.fuproc.2013.04.018

Knothe, G. (2010). Biodiesel and renewable diesel: A comparison. Progress in Energy and Combustion Science, 36(3), 364–373. https://doi.org/10.1016/j.pecs.2009.11.004

Konwar, L., Mikkkola, J. (2022). Carbon support effects on metal (Pd, Pt and Ru) catalyzed hydrothermal decarboxylation/deoxygenation of triglycerides. Applied Catalysis A, 638, 11861.

Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E., Lycourghiotis, A. (2016). Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Applied Catalysis B: Environmental, 181, 156–196. https://doi.org/10.1016/j.apcatb.2015.07.042

Kumar, P., Maity, S. K., Shee, D. (2019). Hydrodeoxygenation of stearic acid using Mo modified Ni and Co/alumina catalysts: Effect of calcination temperature. Chemical Engineering Communications, 1630396. https://doi.org/10.1080/00986445.2019.1630396

Lestari, S., Mäki-Arvela, P., Beltramini, J., Lu, G. Q. M., Murzin, D. Y. (2009). Transforming triglycerides and fatty acids into biofuels. ChemSusChem, 2(12), 1109–1119. https://doi.org/10.1002/cssc.200900107

Li, G., Chen, L., Fan, R., Liu, D., Chen, S., Li, X., Chung, K. H. (2019). Catalytic deoxygenation of C 18 fatty acid over supported metal Ni catalysts promoted by the basic sites of ZnAl2O4 spinel phase. Catalysis Science and Technology, 9(1), 213–222. https://doi.org/10.1039/c8cy02027b

Li, K., Wang, R., Chen, J. (2011). Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts. Energy and Fuels, 25(3), 854–863. https://doi.org/10.1021/ef101258j

Liu, X., Yang, M., Deng, Z., Dasgupta, A., Guo, Y. (2020). Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalysts: mech‐ anism and kinetic modeling. Chemical Engineering Journal, 303(February). https://doi.org/10.1016/j.micromeso.2020.110280

Liu, Yinghua, Yao, L., Xin, H., Wang, G., Li, D., Hu, C. (2015). The production of diesel-like hydrocarbons from palmitic acid over HZSM-22 supported nickel phosphide catalysts. Applied Catalysis B: Environmental, 174–175, 504–514. https://doi.org/10.1016/j.apcatb.2015.03.023

Liu, Yuxiang, Zheng, D., Yu, H., Liu, X., Yu, S., Wang, X., Li, L., Pang, J., Xinmei Liu, Yan, Z. (2020). Rapid and green synthesis of SAPO-11 for deoxygenation of stearic acid to produce bio-diesel fractions. Microporous and Mesoporous Materials, 303.

Ma, B., Zhao, C. (2015). High-grade diesel production by hydrodeoxygenation of palm oil over a hierarchically structured Ni/HBEA catalyst. Green Chemistry, 17(3), 1692–1701. https://doi.org/10.1039/c4gc02339k

Mohamedali, M., Henni, A., Ibrahim, H. (2018). Recent advances in supported metal catalysts for syngas production from methane. ChemEngineering, 2(1), 1–23. https://doi.org/10.3390/chemengineering2010009

Mohammed, S. T., Gheni, S. A., Aqar, D. Y., Hamad, K. I., Ahmed, S. M. R., Mahmood, M. A., Abdullah, G. H., Ali, M. K. (2022). Evaluation and optimal design of a high stability hydrothermal deoxygenation process for production of green diesel fuel via deoxygenation of waste cooking oil. Process Safety and Environmental Protection, 159, 489–499. https://doi.org/10.1016/j.psep.2022.01.006

Morgan, T., Grubb, D., Santillan-Jimenez, E., Crocker, M. (2010). Conversion of triglycerides to hydrocarbons over supported metal catalysts. Topics in Catalysis, 53(11–12), 820–829. https://doi.org/10.1007/s11244-010-9456-1

Murnieks, R., Apseniece, L., Kampars, V., Shustere, Z., Malins, K. (2016). Investigation of Deoxygenation of Rapeseed Oil over Raney Nickel and Ni/SiO2−Al2O3 Catalysts. Arabian Journal for Science and Engineering, 41(6), 2193–2198. https://doi.org/10.1007/s13369-015-1932-2

Naik, S. N., Goud, V. V., Rout, P. K., Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003

Nie, Z., Zhang, Z., Chen, J. (2017). Effect of Ni and noble metals (Ru, Pd and Pt) on performance of bifunctional MoP/SiO 2 for hydroconversion of methyl laurate. Applied Surface Science, 420, 511–522. https://doi.org/10.1016/j.apsusc.2017.05.173

Pan, Z., Wang, R., Nie, Z., Chen, J. (2016). Effect of a second metal (Co, Fe, Mo and W) on performance of Ni2P/SiO2 for hydrodeoxygenation of methyl laurate. Journal of Energy Chemistry, 25(3), 418–426. https://doi.org/10.1016/j.jechem.2016.02.007

Papadopoulos, C., Kordouli, E., Sygellou, L., Bourikas, K., Kordulis, C., Lycourghiotis, A. (2021). W promoted Ni-Al2O3 co-precipitated catalysts for green diesel production. Fuel Processing Technology, 217(February), 106820. https://doi.org/10.1016/j.fuproc.2021.106820

Papanikolaou, G., Lanzafame, P., Giorgianni, G., Abate, S., Perathoner, S., Centi, G. (2020). Highly selective bifunctional Ni zeo-type catalysts for hydroprocessing of methyl palmitate to green diesel. Catalysis Today, 345(November), 14–21. https://doi.org/10.1016/j.cattod.2019.12.009

Parlett, C. M. A., Aydin, A., Durndell, L. J., Frattini, L., Isaacs, M. A., Lee, A. F., Liu, X., Olivi, L., Trofimovaite, R., Wilson, K., Wu, C. (2017). Tailored mesoporous silica supports for Ni catalysed hydrogen production from ethanol steam reforming. Catalysis Communications, 91, 76–79. https://doi.org/10.1016/j.catcom.2016.12.021

PT. PERTAMINA (persero). (2012). Spesifikasi pertamina dex. 1, 6304.

Putra, R., Lestari, W. W., Wibowo, F. R., Susanto, B. H. (2018). Fe/Indonesian natural zeolite as hydrodeoxygenation catalyst in green diesel production from palm oil. Bulletin of Chemical Reaction Engineering &Amp; Catalysis, 13(x), 245–255. https://doi.org/10.9767/bcrec.13.2.1382.245-255

Rakmae, S., Osakoo, N., Pimsuta, M., Deekamwong, K., Keawkumay, C., Butburee, T., Faungnawakij, K., Geantet, C., Prayoonpokarach, S., Wittayakun, J., Khemthong, P. (2020). Defining nickel phosphides supported on sodium mordenite for hydrodeoxygenation of palm oil. Fuel Processing Technology, 198(May 2019), 106236. https://doi.org/10.1016/j.fuproc.2019.106236

Rashidi, N. A., Mustapha, E., Theng, Y. Y., Razak, N. A. A., Bar, N. A., Baharudin, K. B., Derawi, D. (2022). Advanced biofuels from waste cooking oil via solventless and hydrogen-free catalytic deoxygenation over mesostructured Ni-Co/SBA-15, Ni-Fe/SBA-15, and Co-Fe/SBA-15 catalysts. Fuel, 313(February), 122695. https://doi.org/10.1016/j.fuel.2021.122695

Sabarella, Komalasari, W. B., Manurung, M., Sehusman, Supriyati, Y., Rinawati, Seran, K., Saida, M. D. N. (2019). Buletin Konsumsi Pangan. In Buletin Konsumsi Pangan (Vol. 10, Issue 2). http://epublikasi.pertanian.go.id/arsip-buletin/53-buletin-konsumsi/677-buletin-konsumsi-vol-10-no-2-2019

Sabarman, J. S., Legowo, E. H., Widiputri, D. I., Siregar, A. R. (2019). Bioavtur Synthesis from Palm Fatty Acid Distillate through Hydrotreating and Hydrocracking Processes. Indonesian Journal of Energy, 2(2), 99–110. https://doi.org/10.33116/ije.v2i2.40

Saladini, F., Patrizi, N., Pulselli, F. M., Marchettini, N., Bastianoni, S. (2016). Guidelines for emergy evaluation of first, second and third generation biofuels. Renewable and Sustainable Energy Reviews, 66(September 2015), 221–227. https://doi.org/10.1016/j.rser.2016.07.073

Setyoningsih, I. P., Rinaldi, N., Aziz, I., Ridwan, M., Sudiyarmanto, Maryati, Y., Dwiatmoko, A. A., Aulia, F. (2019). Effect of the acid-base properties of the support on the performance of ruthenium catalysts in the hydrodeoxygenation of stearic acid. AIP Conference Proceedings, 2175. https://doi.org/10.1063/1.5134574

Shim, J. O., Jang, W. J., Jeon, K. W., Lee, D. W., Na, H. S., Kim, H. M., Lee, Y. L., Yoo, S. Y., Jeon, B. H., Roh, H. S., Ko, C. H. (2018). Petroleum like biodiesel production by catalytic decarboxylation of oleic acid over Pd/Ce-ZrO2 under solvent-free condition. Applied Catalysis A: General, 563(March), 163–169. https://doi.org/10.1016/j.apcata.2018.07.005

Srifa, A., Kaewmeesri, R., Fang, C., Itthibenchapong, V., Faungnawakij, K. (2018). NiAl2O4 spinel-type catalysts for deoxygenation of palm oil to green diesel. Chemical Engineering Journal, 345, 107–113. https://doi.org/10.1016/j.cej.2018.03.118

Thongkumkoon, S., Kiatkittipong, W., Hartley, U. W., Laosiripojana, N., Daorattanachai, P. (2019). Catalytic activity of trimetallic sulfided Re-Ni-Mo/γ-Al2O3 toward deoxygenation of palm feedstocks. Renewable Energy, 140, 111–123. https://doi.org/10.1016/j.renene.2019.03.039

Trisunaryanti, W. (2018). Dari sampah plastik menjadi bensin dan solar (1st ed.). UGM Press.

Trisunaryanti, W., Triyono, Armunanto, R., Hastuti, L. P., Ristiana, D. D., Ginting, R. V. (2018). Hydrocracking of α-cellulose using Co, Ni, and Pd supported on mordenite catalysts. Indonesian Journal of Chemistry, 18(1), 166–172. https://doi.org/10.22146/ijc.26491

Wan Khalit, W. N. A., Asikin-Mijan, N., Marliza, T. S., Safa-Gamal, M., Shamsuddin, M. R., Azreena, I. N., Saiman, M. I., Taufiq-Yap, Y. H. (2022). One-pot decarboxylation and decarbonylation reaction of waste cooking oil over activated carbon supported nickel-zinc catalyst into diesel-like fuels. Journal of Analytical and Applied Pyrolysis, 164(February), 105505. https://doi.org/10.1016/j.jaap.2022.105505

Xin, H., Guo, K., Li, D., Yang, H., Hu, C. (2016). Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts. Applied Catalysis B: Environmental, 187, 375–385. https://doi.org/10.1016/j.apcatb.2016.01.051

Yang, Y., Lv, G., Deng, L., Lu, B., Li, J., Zhang, J., Shi, J., Du, S. (2017). Renewable aromatic production through hydrodeoxygenation of model bio-oil over mesoporous Ni/SBA-15 and Co/SBA-15. Microporous and Mesoporous Materials, 250, 47–54. https://doi.org/10.1016/j.micromeso.2017.05.022

Yenumala, S. R., Kumar, P., Maity, S. K., Shee, D. (2019). Production of green diesel from karanja oil (Pongamia pinnata) using mesoporous NiMo-alumina composite catalysts. Bioresource Technology Reports, 7(July), 100288. https://doi.org/10.1016/j.biteb.2019.100288

Yoosuk, B., Sanggam, P., Wiengket, S., Prasassarakich, P. (2019). Hydrodeoxygenation of oleic acid and palmitic acid to hydrocarbon-like biofuel over unsupported Ni-Mo and Co-Mo sulfide catalysts. Renewable Energy, 139, 1391–1399. https://doi.org/10.1016/j.renene.2019.03.030

Yu, C., Yu, S., Li, L. (2022). Upgraded methyl oleate to diesel-like hydrocarbons through selective hydrodeoxygenation over Mo-based catalyst. Fuel, 308(September 2021). https://doi.org/10.1016/j.fuel.2021.122038

Zhang, Y., Duan, L., Esmaeili, H. (2022). A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass and Bioenergy, 158(September 2021), 106356. https://doi.org/10.1016/j.biombioe.2022.106356

Zhao, X., Wei, L., Julson, J., Gu, Z., Cao, Y. (2015). Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts. Korean Journal of Chemical Engineering, 32(8), 1528–1541. https://doi.org/10.1007/s11814-015-0028-8

Zhou, L., Lawal, A. (2016). Hydrodeoxygenation of microalgae oil to green diesel over Pt, Rh and presulfided NiMo catalysts. Catalysis Science and Technology, 6(5), 1442–1454. https://doi.org/10.1039/c5cy01307k

Zou, X., Huang, J., Jin, Q., Liu, Y., Song, Z., Wang, X. (2012). Lipase-catalyzed synthesis of human milk fat substitutes from palm stearin in a continuous packed bed reactor. JAOCS, Journal of the American Oil Chemists’ Society, 89(8), 1463–1472. https://doi.org/10.1007/s11746-012-2046-6


Full Text: PDF

DOI: 10.15408/jkv.v9i1.26488

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Isalmi Aziz

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.