Phytoremediation Processes of Sasirangan Textile Industrial Wastewater Treatment using Water Hyacinth
Abstract
The growth of the textile industry, including the Sasirangan textile industry, is increasing yearly, producing large amounts of liquid waste. Generally, this wastewater is discharged into the environment without treatment, becoming a source of environmental pollution. Therefore, it is crucial to reduce these pollutants. Various methods, not only physical and chemical but also biological methods, are available to remediate wastewater. Phytoremediation has provided an economical, environmentally friendly, and aesthetic solution to remediate wastewater. This study aimed to utilize the Water Hyacinth plant as a phytoremediator and determine its effect in reducing Total Suspended Solid and colors in the liquid waste of the Sasirangan textile industry. This research begins by preparing Water Hyacinth plants. Next, the characterization of Water Hyacinth roots using FTIR and SEM. Finaly, the acclimatization of water Hyacinth, followed by a phytoremediation process for 15 days. Based on the results of the characterization of Water Hyacinth roots with FTIR, it shows that Water Hyacinth roots contain functional groups O-H strain, C-H vibrations, C=O strain, C-H deformation, and C-O stretching. Observations with SEM showed that the roots of Water Hyacinth were extremely unstructured and had pores. However, it has cavities which are pores in cellulose. The significant decrease in Total Suspended Solid was at 9 days of phytoremediation, which was 54 mg/L (71.12% removal). The optimum color reduction within 9 days of phytoremediation was 81.5 PtCo (92.26% removal). The presence of these functional groups and pores, strengthened by the analysis of Total Suspended Solid and colors, showed that Water Hyacinth could reduce levels of Total Suspended Solids and colors in the Sasirangan textile wastewater.
Keywords
References
Abdul Aziz, N. I. H., Mohd Hanafiah, M., Halim, N. H., & Fidri, P. A. S. (2020). Phytoremediation of TSS, NH3-N and COD from Sewage Wastewater by Lemna Minor L., Salvinia Minima, Ipomea Aquatica and Centella Asiatica. Applied Sciences, 10(16), 5397.
Adelodun, A. A., Olajire, T., Afolabi, N. O., Akinwumiju, A. S., Akinbobola, E., & Hassan, U. O. (2021). Phytoremediation Potentials of Eichhornia Crassipes for Nutrients and Organic Pollutants from Textile Wastewater. International Journal of phytoremediation, 23(13), 1333-1341.
Ahila, K. G., Ravindran, B., Muthunarayanan, V., Nguyen, D. D., Nguyen, X. C., Chang, S. W., Thamaraiselvi, C. (2021). Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater. Sustainability, 13(1), 329.
Ahmed, H. M., Abdullah, S. R. S., Hasan, H. A., Othman, A. R., Ismail, N. I., & Kurniawan, S. B. (2021). Phytotoxicity of Coffee Wastewater to Water Hyacinth as Prior Step to Phytotreatment Assessment: Influence of Concentration and Amount of Plant Biomass. Environmental Engineering and Management Journal, 20(9), 1543-1544.
Chandra, R., Dubey, N. K., & Kumar, V. (2017). Phytoremediation of Environmental Pollutants: CRC Press.
Chatterjee, S., Mitra, A., Gupta, S. K., & Gupta, D. K. (2019). A Review on Reed Bed System as a Potential Decentralized Wastewater Treatment Practice. In Advances in Plant Transgenics: Methods and Applications (pp. 239-251): Springer.
Donkadokula, N. Y., Kola, A. K., Naz, I., & Saroj, D. (2020). A Review on Advanced Physico-Chemical and Biological Textile Dye Wastewater Treatment Techniques. Reviews in environmental science and bio/technology, 19(3), 543-560.
Du, Y., Wu, Q., Kong, D., Shi, Y., Huang, X., Luo, D., Leung, J. Y. (2020). Accumulation and Translocation of Heavy Metals in Water Hyacinth: Maximising the Use of Green Resources to Remediate Sites Impacted by E-Waste Recycling Activities. Ecological Indicators, 115, 106384.
Ekambaram, S. P., Perumal, S. S., Rajendran, D., Samivel, D., & Khan, M. N. (2018). New Approach of Dye Removal in Textile Effluent: A Cost-Effective Management for Cleanup of Toxic Dyes in Textile Effluent by Water Hyacinth. In Toxicity and Biodegradation Testing (pp. 241-267): Springer.
Gogoi, P., Adhikari, P., & Maji, T. K. (2017). Bioremediation of Arsenic from Water with Citric Acid Cross-Linked Water Hyacinth (E. Crassipes) Root Powder. Environmental Monitoring and Assessment, 189(8), 1-11.
Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A Critical Review on Textile Wastewater Treatments: Possible Approaches. Journal of environmental management, 182, 351-366.
Ilo, O. P., Simatele, M. D., Nkomo, S. p. L., Mkhize, N. M., & Prabhu, N. G. (2020). The Benefits of Water Hyacinth (Eichhornia Crassipes) for Southern Africa: A Review. Sustainability, 12(21), 9222.
Imron, M. F., Ananta, A. R., Ramadhani, I. S., Kurniawan, S. B., & Abdullah, S. R. S. (2021). Potential of Lemna Minor for Removal of Methylene Blue in Aqueous Solution: Kinetics, Adsorption Mechanism, and Degradation Pathway. Environmental Technology & Innovation, 24, 101921.
Jiang, Y., Lei, M., Duan, L., & Longhurst, P. (2015). Integrating Phytoremediation with Biomass Valorisation and Critical Element Recovery: A Uk Contaminated Land Perspective. Biomass and Bioenergy, 83, 328-339.
Madikizela, L. M. (2021). Removal of Organic Pollutants in Water Using Water Hyacinth (Eichhornia Crassipes). Journal of environmental management, 295, 113153.
Mahmood, S., Khan, N., Iqbal, K. J., Ashraf, M., & Khalique, A. (2018). Evaluation of Water Hyacinth (Eichhornia Crassipes) Supplemented Diets on the Growth, Digestibility and Histology of Grass Carp (Ctenopharyngodon Idella) Fingerlings. Journal of Applied Animal Research, 46(1), 24-28.
Muigai, H. H., Choudhury, B. J., Kalita, P., & Moholkar, V. S. (2021). Physico–Chemical Characterization and Pyrolysis Kinetics of Eichhornia Crassipes, Thevetia Peruviana, and Saccharum Officinarum. Fuel, 289, 119949.
Mukaratirwa-Muchanyereyi, N., Kugara, J., & Zaranyika, M. F. (2016). Surface Composition and Surface Properties of Water Hyacinth (Eichhornia Crassipes) Root Biomass: Effect of Mineral Acid and Organic Solvent Treatment. African Journal of Biotechnology, 15(21), 891-896.
Naaz, M., Dutta, A., Kumari, S., & Farooqui, S. (2013). Bioaccumulation, Phytoremediation and Kinetics of Uptake of Heavy Metals (Copper and Zinc) by Eichhornia Crassipes. RRJoE, 2(1), 2278.
Novi, C., Sartika, S., & Shobah, A. N. (2019). Fitoremediasi Logam Seng (Zn) Menggunakan Hydrilla Sp. Pada Limbah Industri Kertas. Jurnal Kimia Valensi, 5(1), 108-114.
Purwati, M. I., Pratiwi, F. D., & Nugraha, M. A. (2021). Potensi Eceng Gondok (Eichhornia Crassipes) Sebagai Fitoremediator Limbah Cair Industri Tahu Skala Rumah Tangga. Journal of Tropical Marine Science, 4(2), 73-78.
Pushpa, T. B., Vijayaraghavan, J., Basha, S. S., Sekaran, V., Vijayaraghavan, K., & Jegan, J. (2015). Investigation on Removal of Malachite Green Using Em Based Compost as Adsorbent. Ecotoxicology and Environmental Safety, 118, 177-182.
Qin, H., Zhang, Z., Liu, M., Liu, H., Wang, Y., Wen, X., Yan, S. (2016). Site Test of Phytoremediation of an Open Pond Contaminated with Domestic Sewage Using Water Hyacinth and Water Lettuce. Ecological Engineering, 95, 753-762.
Rajan, R. J., Sudarsan, J., & Nithiyanantham, S. (2019). Microbial Population Dynamics in Constructed Wetlands: Review of Recent Advancements for Wastewater Treatment. Environmental Engineering Research, 24(2), 181-190.
Raza, A., Habib, M., Kakavand, S. N., Zahid, Z., Zahra, N., Sharif, R., & Hasanuzzaman, M. (2020). Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. Biology, 9(7), 177.
Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S. E., Din, M. F. M., Taib, S. M., Sairan, F. M. (2015). Perspectives of Phytoremediation Using Water Hyacinth for Removal of Heavy Metals, Organic and Inorganic Pollutants in Wastewater. Journal of environmental management, 163, 125-133.
Rigueto, C. V. T., Piccin, J. S., Dettmer, A., Rosseto, M., Dotto, G. L., de Oliveira Schmitz, A. P., Geraldi, C. A. Q. (2020). Water Hyacinth (Eichhornia Crassipes) Roots, an Amazon Natural Waste, as an Alternative Biosorbent to Uptake a Reactive Textile Dye from Aqueous Solutions. Ecological Engineering, 150, 105817.
Riyanti, A., Kasman, M., & Riwan, M. (2019). Efektivitas Penurunan Chemichal Oxygen Demand (Cod) Dan Ph Limbah Cair Industri Tahu Dengan Tumbuhan Melati Air Melalui Sistem Sub-Surface Flow Wetland. Jurnal Daur Lingkungan, 2(1), 16-20.
Ryanita, P. K. Y., Arsana, I. N., & Juliasih, N. K. A. (2020). Fitoremediasi Dengan Tanaman Air Untuk Mengolah Air Limbah Domestik. JURNAL WIDYA BIOLOGI, 11(2), 76-89.
Saber, A., Tafazzoli, M., Mortazavian, S., & James, D. E. (2018). Investigation of Kinetics and Absorption Isotherm Models for Hydroponic Phytoremediation of Waters Contaminated with Sulfate. Journal of environmental management, 207, 276-291.
Saleem, M. H., Ali, S., Rehman, M., Hasanuzzaman, M., Rizwan, M., Irshad, S., Alnusaire, T. S. (2020). Jute: A Potential Candidate for Phytoremediation of Metals—a Review. Plants, 9(2), 258.
Sun, N., Wen, X., & Yan, C. (2018). Adsorption of Mercury Ions from Wastewater Aqueous Solution by Amide Functionalized Cellulose from Sugarcane Bagasse. International journal of biological macromolecules, 108, 1199-1206.
Tabinda, A. B., Arif, R. A., Yasar, A., Baqir, M., Rasheed, R., Mahmood, A., & Iqbal, A. (2019). Treatment of Textile Effluents with Pistia Stratiotes, Eichhornia Crassipes and Oedogonium Sp. International Journal of phytoremediation, 21(10), 939-943.
DOI: 10.15408/jkv.v8i2.26283
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Megayulia Nooryaneti, Chairul Irawan, Abubakar Tuhuloula
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.