Conversion of Nyamplung Oil into Green Diesel through Catalytic Deoxygenation using NiAg/ZH Catalyst

Isalmi Aziz, Lisa Adhani, Muhammad Ihsan Maulana, Mohammad Ali Marwono, Adid Adep Dwiatmoko, Siti Nurbayti

Abstract


Nyamplung oil (Calophyllum inophyllum L) can be converted into green diesel by the catalytic deoxygenation method. Bimetallic catalyst NiAg supported by hierarchical natural zeolite (NiAg/ZH) can be used in this method. This study aims to determine the characteristics of the NiAg/ZH catalyst and the optimal conditions for the catalytic deoxygenation of nyamplung oil into green diesel. The NiAg/ZH catalyst was synthesized by wet impregnation with a total metal concentration of 10% and a mass ratio of Ni/Ag of 4. X-Ray Diffraction, Surface Area Analyzer and NH3-TPD characterized the catalyst. Catalytic deoxygenation of Nyamplung oil was carried out by varying the temperature (325, 350 and 375 °C) and reaction time (1, 2 and 3 hours) with a catalyst dosage of 5%. The composition of the product was analyzed using Gas Chromatography-Mass Spectroscopy. The catalyst XRD spectrum showed a peak at 2θ = 22.38° (clinoptilolite zeolite), 44.42° (Ni) and 38.21° (Ag). The surface area of the catalyst is 46.7024 m2/g, the pore volume is 0.0813 cc/g, the average pore diameter is 6.9632 nm, and the deposit is 1.6882 mmol/g. The optimum catalytic deoxygenation of nyamplung oil was obtained at 350 °C and 3 hours with a gasoline selectivity of 3.51%, kerosene 4.73%, and 62.02% green diesel.

Keywords


Catalytic deoxygenation; green diesel; hierarchical natural zeolite; nyamplung oil

References


Adriawan, A. M., Hartanto, R. R., Novizar, A., Aryani, D., Syarifudin, S., & Saputra, M. Y. (2020). Oil and Gas Statistics Oil and Gas Statistics. Directorate General of oil and gas, Ministry of Energy and Mineral resources.

Ashokkumar, S., Ganesan, V., Ramaswamy, K. K., & Balasubramanian, V. (2018). Bimetallic Co–Ni/TiO2 catalysts for selective hydrogenation of cinnamaldehyde. Research on Chemical Intermediates, 44(11), 6703–6720. https://doi.org/10.1007/s11164-018-3517-7

Atabani, A. E., & César, A. D. S. (2014). Calophyllum inophyllum L. - A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renewable and Sustainable Energy Reviews, 37, 644–655. https://doi.org/10.1016/j.rser.2014.05.037

Aziz, I., Adhani, L., Yolanda, T., & Saridewi, N. (2019). Catalytic cracking of Jatropa curcas oil using natural zeolite of Lampung as a catalyst. IOP Conference Series: Earth and Environmental Science, 299(1). https://doi.org/10.1088/1755-1315/299/1/012065

Aziz, I, Adhani, L., Gustama, D., & Renaningsih, T. (2020). The use of hierarchical zeolite catalysts in catalytic cracking of castor oil. The Madina Minds.

Aziz, I, Retnaningsih, T., Gustama, D., Saridewi, N., Adhani, L., & Dwiatmoko, A. A. (2021). Catalytic cracking of jatropha oil into biofuel over hierarchical zeolite supported NiMo catalyst. 4th International Seminar on Chemistry, 2349(June), 020004. https://doi.org/10.1063/5.0051737

Baharudin, K. B., Abdullah, N., Taufiq-Yap, Y. H., & Derawi, D. (2020). Renewable diesel via solventless and hydrogen-free catalytic deoxygenation of palm fatty acid distillate. Journal of Cleaner Production, 274, 122850. https://doi.org/10.1016/j.jclepro.2020.122850

Mrs., L., Nimlos, M. R., Robichaud, D. J., & Kim, S. (2018). Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite. Catalysis Today, 312, 73–81. https://doi.org/10.1016/j.cattod.2018.02.012

Budianto, A., Sumari, S., & Udyani, K. (2015). Biofuel production from nyamplung oil using catalytic cracking process with Zn-HZSM-5/γ alumina catalyst. ARPN Journal of Engineering and Applied Sciences, 10(22), 10317–10323.

Cheng, S., Wei, L., Zhao, X., & Julson, J. (2016). Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading. Catalysts, 6(12). https://doi.org/10.3390/catal6120195

Dong, G., Luo, Z., Cao, Y., Zheng, S., Zhou, J., Li, W., & Zhou, X. (2021). Understanding size-dependent hydrogenation of dimethyl oxalate to methyl glycolate over Ag catalysts. Journal of Catalysis, 401, 252–261. https://doi.org/10.1016/j.jcat.2021.07.028

Estephane, J., Aouad, S., Hany, S., El Khoury, B., Gennequin, C., El Zakhem, H., El Nakat, J., Aboukaïs, A., & Abi Aad, E. (2015). CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study. International Journal of Hydrogen Energy, 40(30), 9201–9208. https://doi.org/10.1016/j.ijhydene.2015.05.147

Fauzi, R. A., Tursiloadi, S., Dwiatmoko, A. A., Sukandar, D., Aulia, F., Rinaldi, N., & Sudiyarmanto, S. (2019). Performance of Modified Natural Zeolites by Sodium Hydroxide Treatments in The Esterification of Glycerol and Oleic Acid. Journal of Valence Chemistry, 5(2), 236–241. https://doi.org/10.15408/jkv.v5i2.9976

Febriyanti, E., Roesyadi, A., & Prajitno, D. H. (2020). Conversion of Nyamplung Seed Oil (Callophyllum Inophyllum Linn) To Biofuels with NiMo/γ-Al2O3 Based Catalysts. Periodicals, 8(3), 89–95.

Gamal, M. S., Asikin-Mijan, N., Khalit, W. N. A. W., Arumugam, M., Izham, S. M., & Taufiq-Yap, Y. H. (2020). Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Processing Technology, 208(July). https://doi.org/10.1016/j.fuproc.2020.106519

Gousi, M., Andriopoulou, C., Bourikas, K., Ladas, S., Sotiriou, M., Kordulis, C., & Lycourghiotis, A. (2017). Green diesel production over nickel-alumina co-precipitated catalysts. Applied Catalysis A: General, 536, 45–56. https://doi.org/10.1016/j.apcata.2017.02.010

Hafriz, R. S. R. M., Salmiaton, A., Yunus, R., & Taufiq-Yap, Y. H. (2018). Green Biofuel Production via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst. Bulletin of Chemical Reaction Engineering & Amp; Catalysis, 13(3), 489–501. https://doi.org/10.9767/bcrec.13.3.1956.489-501

Hongloi, N., Prapainainar, P., & Prapainainar, C. (2021). Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts. Molecular Catalysis, January, 111696. https://doi.org/10.1016/j.mcat.2021.111696

Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Khanali, M., & Demirbas, A. (2018). A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Conversion and Management, 174(June), 579–614. https://doi.org/10.1016/j.enconman.2018.08.050

Istadi, I., Riyanto, T., Buchori, L., Anggoro, D. D., Gilbert, G., Meiranti, K. A., & Khofiyanida, E. (2020). Enhancing Brønsted and Lewis Acid Sites of the Utilized Spent RFCC Catalyst Waste for the Continuous Cracking Process of Palm Oil to Biofuels. Industrial and Engineering Chemistry Research, 59(20), 9459–9468. https://doi.org/10.1021/acs.iecr.0c01061

Kadja, Grandprix T.M, Rilyanti, Mita, Mukti, Rino R., Marsih, I Nyoman, I. (2013). Hierarchical Zeolite Synthesis Strategy : A Study of Soft Print and Hard Print Methods Synthesis Strategy of Hierachical Zeolites : Soft-and Hard-templating method. Journal of Mathematics & Science, 18(3), 103–114.

Kaewmeesri, R., Srifa, A., Itthibenchapong, V., & Faungnawakij, K. (2015). Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: Effect of water and free fatty acid content. Energy and Fuels, 29(2), 833–840. https://doi.org/10.1021/ef5023362

Kamaruzaman, M. F., Taufiq-Yap, Y. H., & Derawi, D. (2020). Green diesel production from palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt catalysts. Biomass and Bioenergy, 134(January), 105476. https://doi.org/10.1016/j.biombioe.2020.105476

Karavalakis, G., Jiang, Y., Yang, J., Durbin, T., Nuottimäki, J., & Lehto, K. (2016). Emissions and Fuel Economy Evaluation from Two Current Technology Heavy-Duty Trucks Operated on HVO and FAME Blends. SAE International Journal of Fuels and Lubricants, 9(1), 177–190. https://doi.org/10.4271/2016-01-0876

Khalit, W. N. A. W., Asikin-Mijan, N., Marliza, T. S., Safa-Gamal, M., Shamsuddin, M. R., Azreena, I. N., Saiman, M. I., & Taufiq-Yap, Y. H. (2022). One-pot decarboxylation and decarbonylation reaction of waste cooking oil over activated carbon supported nickel-zinc catalyst into diesel-like fuels. Journal of Analytical and Applied Pyrolysis, 164(February), 105505. https://doi.org/10.1016/j.jaap.2022.105505

Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E., & Lycourghiotis, A. (2016). Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Applied Catalysis B: Environmental, 181, 156–196. https://doi.org/10.1016/j.apcatb.2015.07.042

Leksono, B., Eritrina, W., & Hasnah, T. M. (2012). Cultivation of Nyamplung Plants (Callophyllum inophyllum L.) for Bioenergy and Other Utilization Prospects. November, 7–20.

Li, L., Quan, K., Xu, J., Liu, F., Liu, S., Yu, S., Xie, C., Zhang, B., & Ge, X. (2014). Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst. Fuel, 123, 189–193. https://doi.org/10.1016/j.fuel.2014.01.049

Murnieks, R., Apseniece, L., Kampars, V., Shustere, Z., & Malins, K. (2016). Investigation of Deoxygenation of Rapeseed Oil over Raney Nickel and Ni/SiO 2−Al2O3 Catalysts. Arabian Journal for Science and Engineering, 41(6), 2193–2198. https://doi.org/10.1007/s13369-015-1932-2

Prasetyo, J., Adiarso, A., Murti, S. D. S., Senda, S. P., Rfdh, S. M., Prada, Y. E., & Oktariani, E. (2018). A Preliminary study of deoxygenation of Calophyllum inophyllum L. oil for green diesel production. IOP Conference Series: Materials Science and Engineering, 334(1). https://doi.org/10.1088/1757-899X/334/1/012005

Rahmani, F., Haghighi, M., & Amini, M. (2015). The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO 2-oxidative dehydrogenation of ethane to ethylene. Journal of Industrial and Engineering Chemistry, 31, 142–155. https://doi.org/10.1016/j.jiec.2015.06.018

Rashad, A. M., El Sharkawy, H. M., Ebiad, M. A., El sayed, H. A., Tantawy, A. H., Hebash, K. A., El sabagh, S. M., & Park, A. R. (2021). Recent trends for clean fuel production by deoxygenation of pure palmitic acid using Ni/C catalyst. Egyptian Journal of Chemistry, 64(2), 883–892. https://doi.org/10.21608/EJCHEM.2020.40845.2829

Rasyid, R.-, Aditya S. W, R., Dian.L, D., Mahfud, M., & Roesyadi, A. (2015). The effectiveness of Co/Mo catalysts on hydrocracking nyamplung oil. Reactor, 15(4). https://doi.org/10.14710/reaktor.15.4.268-273

Rasyid, R., Malik, R., Kusuma, H. S., Roesyadi, A., & Mahfud, M. (2018). Triglycerides hydrocracking reaction of nyamplung oil with non-sulfided CoMo/γ-Al2O3 Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 13(2), 196–203. https://doi.org/10.9767/bcrec.13.2.734.196-203

Satriadi, H., Pratiwi, I. Y., Khuriyah, M., Widayat, Hadiyanto, & Prameswari, J. (2022). Geothermal solid waste derived Ni/Zeolite catalyst for waste cooking oil processing. Chemosphere, 286(P1), 131618. https://doi.org/10.1016/j.chemosphere.2021.131618

Sriningsih, W., Saerodji, M. G., Trisunaryanti, W., Triyono, Armunanto, R., & Falah, I. I. (2014). Fuel Production from LDPE Plastic Waste over Natural Zeolite Supported Ni, Ni-Mo, Co and Co-Mo Metals. Procedia Environmental Sciences, 20, 215–224. https://doi.org/10.1016/j.proenv.2014.03.028

Susanto, B. H., Nasikin, M., Sukirno, & Wiyo, A. (2014). Synthesis of Renewable Diesel through Hydrodeoxygenation Using Pd/zeolite Catalysts. Procedia Chemistry, 9, 139–150. https://doi.org/10.1016/j.proche.2014.05.017

Trisunaryanti, W., Triyono, T., Ghoni, M. A., Fatmawati, D. A., Mahayuwati, P. N., & Suarsih, E. (2020). Hydrocracking of calophyllum inophyllum oil employing Co and/or Mo supported on γ-Al2O3 for biofuel production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(3), 743–751. https://doi.org/10.9767/BCREC.15.3.8592.743-751

Tsuji, M., Miyamae, N., Lim, S., Kimura, K., Zhang, X., Hikino, S., & Nishio, M. (2006). Au@Ag Core−Shell Nanoparticles Prepared by the Microwave−Polyol Method.pdf. Crystal Growth & Design, 6(8), 1801–1807.

Wan Khalit, W. N. A., Asikin-Mijan, N., Marliza, T. S., Safa-Gamal, M., Shamsuddin, M. R., Azreena, I. N., Saiman, M. I., & Taufiq-Yap, Y. H. (2022). One-pot decarboxylation and decarbonylation reaction of waste cooking oil over activated carbon supported nickel-zinc catalyst into diesel-like fuels. Journal of Analytical and Applied Pyrolysis, 164(February), 105505. https://doi.org/10.1016/j.jaap.2022.105505

Xiao, W., Wang, F., & Xiao, G. (2015). Performance of hierarchical HZSM-5 zeolites prepared by NaOH treatments in the aromatization of glycerol. Royal Society of Chemistry, 78, 63697–63704. https://doi.org/https://doi.org/10.1039/C5RA07593A

Zhang, Y., Duan, L., & Esmaeili, H. (2022). A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass and Bioenergy, 158(September 2021), 106356. https://doi.org/10.1016/j.biombioe.2022.106356

Zheng, Z., Wang, J., Wei, Y., Liu, X., Yu, F., & Ji, J. (2019). Effect of La-Fe/Si-MCM-41 catalysts and CaO additive on catalytic cracking of soybean oil for biofuel with low aromatics. Journal of Analytical and Applied Pyrolysis, 143(18), 104693. https://doi.org/10.1016/j.jaap.2019.104693

Zikri, A., Puspita, I., Erlinawati, Sutini PLAgus, M., Elbi Zalita, P., & Andre, K. (2021). Production of Green Diesel From Crude Palm Oil (CPO) Through Hydrotreating Process by Using Zeolite Catalyst. Proceedings of the 4th Forum in Research, Science, and Technology (FIRST-T1-T2-2020), 7, 67–74. https://doi.org/10.2991/ahe.k.210205.013


Full Text: PDF

DOI: 10.15408/jkv.v8i2.25943

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Isalmi Aziz

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.