Antibacterial and Antioxidant Activity of Endophytic Bacteria Isolated from Hibiscus tilaceus Leaves
Abstract
Antibacterial is a compound that inhibits or kills bacteria, especially infectious pathogenic bacteria. Antioxidants are compounds to inhibit the activity of free radicals in the body. The leaf extract of the waru plant (Hibiscus tiliaceus) is reported to have antibacterial, antioxidant, and anti-inflammatory activity. Bioactive compounds obtained from plants generally require a lot of plant availability and large areas for growth and take a long time. One solution to solve this problem is to isolateendophytic bacteria from plants. Endophytic bacteria are bacteria that live symbiotically in the host tissue so that they can produce the same bioactive compounds as the host. In the study, several stages were carried out, including isolation of endophytic bacteria from hibiscus leaves, gram-staining of bacteria, secondary metabolites production, antibacterial activity analysis by disk method,antioxidant activity analysis by DPPH free radical scavenger method, phytochemical screening, and identification of genotypic endophytic bacteria. Isolates of endophytic bacteria from Hibiscus tiliaceus leaves were obtained in cocci. They formed gram-positive bacteria with the closest relationship with Staphylococcus warneri strainAW 25 and Staphylococcus pasteuri strainATCC 51129. Endophytic bacteria from the Hibiscus tiliaceus leaves produce secondary metabolites containing alkaloids and saponins that can inhibit the growth of Staphylococcus aureus and Salmonella typhi and can be an antioxidant agent.
Keywords
References
Amalia, A., Sari, I., & Nursanty, R. (2017). Aktivitas Antibakteri Ekstrak Etil Asetat Daun Sembung (Blumea balsamifera (L.) DC.) Terhadap Pertumbuhan Bakteri Methicillin Resistant Staphylococcus aureus (MRSA). Prosiding Seminar Nasional Biotik, 5(1), 387-391. http://dx.doi.org/10.22373/pbio.v5i1.2160
Bandaranayake, W. M. (2002). Bioactivities, Bioactive Compounds and Chemical Constituents of Mangrove Plants. Wetlands Ecology and Management 6(10), 421–452. https://doi.org/10.1023/A:1021397624349
Bata, M. & Rahayu, S. (2017). Evaluation of Bioactive Substance in Hibiscus tiliaceus and its Potestial as a Ruminant Feed Additive. Bentham Science, Current Bioactive Compounds, 13:, 57–64. https://dx.doi.org/10.2174/1573407213666170109151904
Bernard, D., Hassana,Y., Djaouda, M., Mathieu, M., Romeo, W.B., Benoit, K., & Wahab, A.T. (2022). Antibacterial Effects of A New Triterpenoid Saponin From Roots of Gardenia ternifolia Schumach. & Thonn (Rubiaceae). Result In Chemistry, 4, 1-6. https://doi.org/10.1016/j.rechem.2022.100366
Biswas, D., Biswas, P., Nandy, S., Mukherjee, A., Pandey, D.K., & Dey, A. (2020). Endophytes producing podophyllotoxin from Podophyllum sp. and other plants: A review on isolation, extraction and bottlenecks. South African Journal of Botany. 134, 303-313. https://doi.org/10.1016/j.sajb.2020.02.038
Brader, G., Compant, S., Mitter, B., Trognitz, F., & Sessitsch, A. (2014). Metabolic potential of endophytic bacteria. Current opinion in biotechnology, 27(100), 30–37. https://doi.org/10.1016/j.copbio.2013.09.012
Brindhadevi, K., Chidambaram, M., Kavitha, R., Govindaraj, R., Arunachalam, C., Salmen, S.H., Prabakaran, D.S., & Natesan, V. (2022). Extraction, antioxidant, and anticancer activity of saponins extracted from Curcuma angustifolia. Applied Naniscience. https://doi.org/10.1007/s13204-021-02096-9
Chen, Y., Miao, Y., Huang, L., Li, J., Sun, H., Zhao, Y., Yang, J., & Zhou, W. (2014). Antioxidant activities of saponins extracted from Radix Trichosanthis: an in vivo and in vitro evaluation. BMC complementary and alternative medicine, 14, 86. https://doi.org/10.1186/1472-6882-14-86
Chesneau, O., Morvan, A., Grimont, F., Labischinski, H., & el Solh, N. (1993). Staphylococcus pasteuri sp. nov., isolated from human, animal, and food specimens. International journal of systematic bacteriology, 43(2), 237–244. https://doi.org/10.1099/00207713-43-2-237
Chitemerere, T. A., & Mukanganyama, S. (2011). In vitro antibacterial activity of selected medicinal plants from Zimbabwe.” African Journal of Plant Science and Biotechnology 5, 1–7.
Dong, S., Yang, X., Zhao, L., Zhang, F., Hou, Z., & Xue, P. (2020). Antibacterial Activity and Mechanism of Action Saponins From Chenopodium quinoa Willd. Husks Against Foodborne Pathogenic Bacteria. Industrial Crops and Products. 149 1-14. https://doi.org/10.1016/j.indcrop.2020.112350
Dong, Z. Y., Narsing Rao, M. P., Xiao, M., Wang, H. F., Hozzein, W. N., Chen, W., & Li, W. J. (2017). Antibacterial Activity of Silver Nanoparticles against Staphylococcus warneri Synthesized Using Endophytic Bacteria by Photo-irradiation. Frontiers in microbiology, 8, 1090. https://doi.org/10.3389/fmicb.2017.01090
Gurrapu, S., & Mamidala, E. (2017). In vitro Antibacterial Activity of Alkaloids Isolated From Eclipta alba againts Human Pathogrnic Bacteria. Pharmacognosy Journal. 9(4), 573-577. http://dx.doi.org/10.5530/pj.2017.4.91
Harborne, J. B. (1987). Metode Fitokimia, Penuntun Cara Modern Mengekstraksi Tumbuhan, Terjemahan Padmawinata. Bandung: Institut Teknologi Bandung.
Jasim, B., Joseph, A. A., John, C. J., Mathew, J., & Radhakrishnan, E. K. (2013). Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech, 4(2), 197–204. https://doi.org/10.1007/s13205-013-0143-3
Kusari, S., Pandey, S. P., & Spiteller, M. (2012). Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry, 91, 81–87. https://doi.org/10.1016/j.phytochem.2012.07.021
Lakna. (2017). Difference Between Gram Positive Negative Bacteria. 1-7.
Leonita, S., Bintang, M., & Pasaribu, F.H. (2016). Isolation and Identification of Endophytic Bacteria from Ficus Variegata Blume as Antibacterial Compounds Producer. Current Biochemistry, 2(3), 116–128. https://doi.org/10.29244/CB.2.3.116-128
Lim, J.G., Park, H.M., & Yoon, K.S. (2019). Analysis of Saponin Composition and Comparison of The Antioxidant Activity of Various Parts of The Quinoa Plant (Chenopodium quinoa Willd.). Food Science and Nutrition. 1-6. https://doi.org/10.1002/fsn3.1358
Ma, J.T., Du, J. X., Zhang, Y., Liu, J.K., Feng, T., & He, J. (2022). Natural Imidazole Alkaloids As Antibacterial Agents Against Pseudomonas syringae pv. actinidiae Isolated From Kiwi Endophytic Fungus Fusarium tricinctum. Fitoterapia. 156, 1-5. https://doi.org/10.1016/j.fitote.2021.105070
Mulyani, S., Aristia, K. S., Sabrina, A. P., Arfiah, A., & Niam, B. (2020). Potential of Water Extract of The White Frangipani (Plumeria acuminate) and Hibiscus (Hibiscus tiliaceus) Leaves Powder as Textile Natural Dyes. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 5(1), 100-109. https://doi.org/10.20961/jkpk.v5i1.25810
Munteanu, I. G., & Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International journal of molecular sciences, 22(7), 3380. https://doi.org/10.3390/ijms22073380
Nurzaman, F., Djajadisastra, J., & Elya, B. (2018). Identifikasi Kandungan Saponin dalam Ekstrak Kamboja Merah (Plumeria rubra L.) dan Daya Surfaktan dalam Sediaan Kosmetik. Jurnal Kefarmasian Indonesia, 8(2), 85-93. https://doi.org/10.22435/jki.v8i2.325
Oktavia, N., & Pujiyanto, S. (2018). Isolasi dan Uji Antagonisme Bakteri Endofit Tapak Dara (Catharanthus Roseus, L.) terhadap Bakteri Escherichia coli dan Staphylococcus aureus. Berkala Bioteknologi, 1(1). 6 -12.
Oliveira, N.C., Rodrigues, A.A., Alves, M.I., Filho, N.R., Sadoyama, G., & Vieira, D.G. (2012). Endophytic bacteria with potential for bioremediation of petroleum hydrocarbons and derivatives. African Journal of Biotechnology, 11, 2977-2984. https://doi.org/10.5897/AJB10.2623
Phukon, Madhurima & Sahu, Priyanka & Srinath, Rajaraman & Angamuthu, Nithya & Babu, Subramanian. (2013). Unusual Occurrence of Staphylococcus warneri as Endophyte in Fresh Fruits along with Usual Bacillus spp. Journal of Food Safety, 33(1), 102-106. https://doi.org/10.1111/jfs.12028
Radji, M. (2005). Peranan Bioteknologi dan Mikroba Endofit Dalam Pengembangan Obat Herbal. Majalah Ilmu Kefarmasian 2(3):113–26. http://dx.doi.org/10.7454/psr.v2i3.3388.
Raji, P., Samrot, A.V., Keerthana, D., & Karishma, S. (2019). Antibacterial Activity of Alkaloids, Flavonoids, Saponins and Tannins Mediated Green Synthesised Silver Nanoparticles Againts Pseudomonas aeruginosa and Bacillus subtilis. Journal of Cluster Science, 30, 881–895. https://doi.org/10.1007/s10876-019-01547-2
Ramposhad, S., Afroz, T., Mondal, B., Haque, A., Ara, S., Khan, R., & Ahmed, S. (2012). Antioxidant and Antimicrobial Activities of Leaves of Medicinal Plant Hibiscus tiliaceus L. Pharmacology Online 3:82–87.
Rivero-Cruz, J. F., Granados-Pineda, J., Pedraza-Chaverri, J., Pérez-Rojas, J. M., Kumar-Passari, A., Diaz-Ruiz, G., & Rivero-Cruz, B. E. (2020). Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis. Antioxidants (Basel, Switzerland), 9(1), 70. https://doi.org/10.3390/antiox9010070
Samsudin, M. S., Andriani, Y., Sarjono, P. R., & Syamsumir, D. F. (2019). Study On Hibiscus tiliaceus Leaves As Antibacterial And Antioxidant Agents. Jurnal Pendidikan dan Ilmu KImia. 3(2), 123–31. https://doi.org/10.33369/atp.v3i2.9874
Sanchez, S., & Demain, A. L. (2011). Comprehensive Biotechnology. Third Edition, Six Volume.
Sharah, A., Karnila, R., & Desmelati. (2015). Pembuatan Kurva Pertumbuhan Bakteri Asam Laktat yang di Isolasi dari Ikan Peda Kembung (Rastrelliger sp.). Jurnal Online Mahasiswa Bidang Perikanan dan Ilmu Kelautan, 2(2), 1-8.
Tan, R. X., & Zou, W. X. (2001). Endophytes: a rich source of functional metabolites. Natural product reports, 18(4), 448–459. https://doi.org/10.1039/b100918o
Tanaka, M., Sukiman, H., Takebayashi, M., Saito, K., Prana, M., Prana, T., & Tomita. F. (1999). Isolation of Endophytes from Plants in Southeast Asia and Japan, and Their Identification by 18s rRNA Gene. Annnual report of ICBiotech.
Usman, H., Abdulrahman, F., & Usman, A. (2009). Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). African journal of traditional, complementary, and alternative medicines : AJTCAM, 6(3), 289–295. https://doi.org/10.4314/ajtcam.v6i3.57178
Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics (Basel, Switzerland), 10(3), 318. https://doi.org/10.3390/antibiotics10030318
DOI: 10.15408/jkv.v8i2.25686
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Purbowatiningrum Ria Sarjono, Aulia Anggraeni, Afiina Putri Monita, Mukhammad Asy’ari, Ismiyarto Ismiyarto, Ngadiwiyana Ngadiwiyana, Nor Basid Adiwibawa Prasetya
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.