Computational Study of 1-(3-Nitrobenzoyloxymethyl)-5-Fluorouracyl Derivatives as Colorectal Cancer Agents

Richa Mardianingrum, Delis Susilawati, Ruswanto Ruswanto


Cancer is one of the chronic diseases with a reasonably high increase at this time. One type of cancer with the highest mortality rate is colorectal cancer. Colorectal cancer is cancer that occurs in the colon and rectum. Based on GLOBOCAN data (2018), cases of colorectal cancer in Indonesia reached 8.6% or 30,017 people and were the second most common cause of death in men and the third in women. The development of cancer drugs to obtain drugs with better activity, lower toxicity, and working more selectively through structural modifications is still being carried out until now. This study aims to determine the pharmacokinetic properties and stable interactions between the thymidylate synthase and one of the 78 derivatives of 1-(3-nitrobenzoiloximethyl)-5-fluorouracyl (NB5FU) by in silico, namely molecular docking, and molecular dynamics simulations. The result shows that the NB5FU78 derivative compounds have better pharmacokinetic properties than NB5FU. Lipinski's rules of five criteria that fill the requirements have a smaller free bond energy value than NB5FU. Based on the results of molecular dynamics simulations carried out for 5 ns, the NB5FU78 derivative has a stable interaction with the thymidylate synthase (TS) receptor with total bond energy of -36.36 kcal/mol.


Colorectal cancer; 1-(3-nitrobenzoyloksimehyl)-5-fluorouracyl; molecular docking; molecular dynamic


Bollag, W., & Hartmann, H. R. (1980). Tumor inhibitory effects of a new fluorouracil derivative: 5′-deoxy-5-fluorouridine. European Journal of Cancer (1965), 16(4), 427-432.

Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., Cheatham, T. E., III, Darden, T. A., Duke, R. E., Gohlke, H., Goetz, A. W., Gusarov, S., Homeyer, N., Janowski, P.,

Kaus, J., Kolossvary, I., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Luchko, T., Luo, R., Madej, B., Merz, K. M., Paesani, F., Roe, D. R., Roitberg, A., Sagui, C., Salomon-Ferrer, R., Seabra, G., Simmerling, C. L., Smith, W., Swails, J., Walker, R. C., Wang, J., Wolf, R. M., Wu, X., Kollman, P. A. AMBER 2014, University of California: San Francisco, 2014.

Chen, D., Jansson, A., Sim, D., Larsson, A., & Nordlund, P. (2017). Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states. Journal of Biological Chemistry, 292(32), 13449-13458.

Dermawan, D., Riyadi S., dan Deti D. 2019. Molecular Dynamics Simulation of Estrogen Receptor Alpha against Andrografolid as Anti Breast Cancer. Indonesian Journal of Phamaceutical Science and Technology 6(2), 2019; 65-76.

Giovannetti, E., Backus, H. H. J., Wouters, D., Ferreira, C. G., Van Houten, V. M. M., Brakenhoff, R. H., ... & Peters, G. J. (2007). Changes in the status of p53 affect drug sensitivity to thymidylate synthase (TS) inhibitors by altering TS levels. British journal of cancer, 96(5), 769-775.

Global Cancer Observatory (GLOBOCAN). 2018. Cancer. Citting Internet Sources URL [30 Juni 2020].

Global Cancer Observatory (GLOBOCAN). 2019. Cancer Today. Citting Internet Sources URL [19 Desember 2019].

Gmeiner, W. H. (2005). Novel chemical strategies for thymidylate synthase inhibition. Current medicinal chemistry, 12(2), 191-202.

Jarmula, A. (2010). Antifolate inhibitors of thymidylate synthase as anticancer drugs. Mini reviews in medicinal chemistry, 10(13), 1211-1222.

Kementerian Kesehatan Republik Indonesia (Kemenkes RI). 2018. Pedoman Nasional Pelayanan Kedokteran Tata Laksana Kanker Kolorektal. Jakarta.

Mardianingrum, R., Endah, S. R. N., Suhardiana, E., Ruswanto, R., & Siswandono, S. (2021). Docking and molecular dynamic study of isoniazid derivatives as anti-tuberculosis drug candidate. Chemical Data Collections, 32, 100647.

Mardianingrum, R., Hariono, M., Ruswanto, R., Yusuf, M., & Muchtaridi, M. (2021). Synthesis, Anticancer Activity, Structure–Activity Relationship, and Molecular Modeling Studies of α-Mangostin Derivatives as hERα Inhibitor. Journal of Chemical Information and Modeling.

Oktavianawati, Ika dan Ayik Rosita P. 2014. Pengembangan Obat Turunan 5- Fluorourasil sebagai Agen Antikanker dengan Pendektan Molekuler. Jember: Universitas Jember.

Ozaki, S., Ike, Y., Mizuno, H., Ishikawa, K., & Mori, H. (1977). 5-Fluorouracil derivatives. I. The synthesis of 1-carbamoyl-5-fluorouracils. Bulletin of the Chemical Society of Japan, 50(9), 2406-2412.

Pan, Xiaoping, et al. 2011. 5-Fluorouracil Drug Alters the MicroRNA Expression Profiles in MCF-7 Breast Cancer Cells. Journal of Cellular Physiology Original Research Article.

Pan, X., Wang, C., Wang, F., Li, P., Hu, Z., Shan, Y., & Zhang, J. (2011). Development of 5-Fluorouracil derivatives as anticancer agents. Current medicinal chemistry, 18(29), 4538-4556.

Puratchikody, A., Sriram, D., Umamaheswari, A., Irfan, N. (2016). 3D Structural Interactions and Quantitative Structural Toxicity Studies of Tyrosine Derivatives Intended for Safe Potent Inflammation Treatment. Chemistry Central Journal, 10(24), 1–19.

Rozano, L., Abdullah Zawawi, M. R., Ahmad, M. A., & Jaganath, I. B. (2017). Computational

Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor.

Advances in Bioinformatics, 2017, 1–16.

Ruswanto, R., Miftah, A. M., & Tjahjono, D. H. (2021). In silico study of 1-benzoyl-3-methylthiourea derivatives activity as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor candidates. Chemical Data Collections, 34, 100741.

Ruswanto, R. (2015). molecular docking empat turunan isonicotinohydrazide pada mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA). Jurnal Kesehatan Bakti Tunas Husada: Jurnal Ilmu-ilmu Keperawatan, Analis Kesehatan dan Farmasi, 13(1).

Ruswanto, R., Mustaqim, I., Tuslinah, L., Mardianingrum, R., Lestari, T., & Nofianti, T. (2018). Kuersetin: penghambat uridin 5-monofosfat sintase sebagai kandidat antikanker. ALCHEMY Jurnal Penelitian Kimia, 14(2), 236-252.

Sander M. A. 2012. Profil penderita kanker kolon dan rektum di RSUP Hasan Sadikin Bandung. Jurnal Keperawatan Universitas Muhammadiyah Malang. 3(1).

Siswandono. 2014. Pengembangan Obat baru, Edisi Pertama. Surabaya: Airlangga University Press.

Sun, J., Zhang, S. J., Li, H. B., Zhou, W., Hu, W. X., & Shan, S. (2013). Novel 5-fluorouracil derivatives: synthesis and cytotoxic activity of 2-butoxy-4-substituted 5-fluoropyrimidines. Bulletin of the Korean Chemical Society, 34(5), 1349-1354.

Tambunan, Friend, U.S., Amri, N., and Parikesit, A.A., (2012). In Silico Design of Cyclic Peptides as Influenza Virus, a Subtype H1N1 Neuraminidase Inhibitor. African Journal of Biotechnology 11(52), 11474‒11491. doi: 10.5897/AJB11.4094.

Taricani, L., Shanahan, F., Pierce, R. H., Guzi, T. J., & Parry, D. (2010). Phenotypic enhancement of thymidylate synthetase pathway inhibitors following ablation of Neil1 DNA glycosylase/lyase. Cell Cycle, 9(24), 4876-4883.

Tian, Z. Y., Du, G. J., Xie, S. Q., Zhao, J., Gao, W. Y., & Wang, C. J. (2007). Synthesis and bioevaluation of 5-fluorouracil derivatives. Molecules, 12(11), 2450-2457.

World Health Organization (WHO). 2014. Cancer Country Profile. Citting Internet Sources URL [13 Desember 2019].

Xu, H., Faber, C., Uchiki, T., Racca, J., Dealwis, C. Proc.Natl.Acad.Sci.Usa. 2006, 103, 4028-4033.

Yamashita, S., Furubayashi, T., Kataoka, M., Sakane, T., Sezaki, H., & Tokuda, H. (2000).

Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells.

European Journal of Pharmaceutical Sciences, 10(3), 195–204.

Yee, S. (1997). In vitro permeability across caco-2 cells (colonic) can predict in vivo (small

intestinal) absorption in man—fact or myth. Pharmaceutical Research, 14(4), 763–766.

Zhao, Y. H., Le, J., Abraham, M. H., Hersey, A., Eddershaw, P. J., Luscombe, C. N., Boutina, D., Beck, G., Sherborne, B., Cooper, I., & Platts, J. A. (2001). Evaluation of human intestinal

absorption data and subsequent derivation of a quantitative structure–activity relationship (QSAR) with the Abraham descriptors. Journal of Pharmaceutical Sciences, 90(6), 749–

Full Text: PDF

DOI: 10.15408/jkv.v8i2.25489


  • There are currently no refbacks.

Copyright (c) 2022 Ruswanto Ruswanto, Richa Mardianingrum, Delis Susilawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.