Synthesis and Antibacterial Activity of 1,3,5,7-Tetrahydroxy-9,10-Anthraquinone and Anthrone Derivatives

Siti Nurbayti, Didin Mujahidin, Yana Maolana Syah

Abstract


In this research, the synthesis of 1,3,5,7-tetrahydroxy-9,10-anthraquinone (1) and two anthrone derivatives, 1,3,5,7-tetrahydroxy-10H-anthracene-9-one (2) and 1-hydroxy-3,5,7,9-tetramethoxyanthracene (3) has been done. Compound 1 was synthesized by a symmetrical condensation reaction of 3,5-dihydroxybenzoic acid in concentrated sulfuric acid. Reduction of the carbonyl group in compound 1 with SnCl2/HCl-HOAc affords compound 2. Compound 3 was prepared by modifying the hydroxy groups of compound 2 by a methylation reaction. The synthesized compounds were identified using nuclear magnetic resonance spectroscopy (NMR) and a high-resolution mass spectrometry (HR-ESI-MS). The antibacterial activity test of the synthesized compounds against four pathogenic bacteria, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Salmonella typhi, was carried out using the microdilution method. Compound 3 showed moderate activity against B. subtilis, E. coli and S. typhi with a MIC value of 37.5 µg/mL. Moderate activity was also shown by compound 2 against S. aureus, while compound 1 showed weak activity with a MIC value of 75 µg/mL against the four test bacteria.


Keywords


Anthraquinone; anthrone; antibacterial; methylation; reduction

References


Ali, A. M., Ismail, N. H., Mackeen, M. M., Yazan, L. S., Mohamed, S. M., Ho, A. S. H., & Lajis, N. H. (2000): Antiviral, Cytotoxic and Antimicrobial Activities of Anthraquinones Isolated from the Roots of Morinda elliptica. Pharmaceutical Biology, 38, 298-301.

Al-Tamimi, M., Al-Massarani, S. M., El-Gamal, A. A., Basudan, O. A., Abdel-Kader, M. S., & Abdel-Mageed, W. M. (2020). Vacillantins A and B, New Anthrone C-glycosides, and a New Dihydroisocoumarin Glucoside from Aloe vacillans and Its Antioxidant Activities. Plants, 9(12), 1632.

Barnard, D. L., Huffman, J. H., Morris, J. L. B., Wood, S. G., Hughes, B. G., and Sidwell, R. W. (1992): Evaluation of the Antiviral Activity of Anthraquinones, Anthrones and Anthraquinone Derivatives against Human Cytomegalovirus. Antiviral Research, 17, 63-77.

Bunbamrung, N., Supong, K., Intaraudom, C., Dramae, A., Auncharoen, P., & Pittayakhajonwut, P. (2018). Anthrone Derivatives from the Terrestrial Actinomycete, Actinomadura Sp. BCC47066. Phytochem. Lett., 25, 109–117.

Chukwujekwu, J. C., Coombes, P. H., Mulholland, D. A., & van Staden, J. (2006): Emodin, an Antibacterial Anthraquinone from the Roots of Cassia occidentalis. South African Journal of Botany, 72, 295-297.

CLSI (Clinical and Laboratory Standards Institute). (2012). Methods for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically: Approved Standard-9th edition. CLSI Document M07-A9, 32(2).

Criswell, T., & Klanderman, B. H. (1974). Studies Related to the Conversion of 9,10-Anthraquinones to Anthracenes. Journal of Organic Chemistry, 39, 770–774.

Dave, H., & Ledwani, L. (2012). A review on anthraquinones isolated from cassia species and their applications. Indian Journal of Natural Products and Resources, 3, 291–319.

Feilcke, R., Arnouk, G., Raphane, B., Richard, K., Tietjen, I., Andrae-Marobela, K., Erdmann, F., Schipper, S., Becker, K., Arnold, N., Frolov, A., Reiling, N., Imming, P., & Fobofou, S. A. T. (2019). Biological activity and stability analyses of knipholone anthrone, a phenyl anthraquinone derivative isolated from Kniphofia foliosa Hochst. J Pharm Biomed Anal., 174, 277–285.

Hamed, M. M., Refahy, L. A., & Abdel-Aziz, M. (2015). Evaluation of Antimicrobial Activity of Some Compounds Isolated from Rhamnus cathartica L. Oriental Journal of Chemistry, 31, 1133–1140.

Korth, H. G., & Mulder, P. (2013). Anthrone and Related Hydroxyarenes: Tautomerization and Hydrogen Bonding. Journal of Organic Chemistry, 78, 7674–7682.

Kuete, V., Nguemeving, J. R., Beng, V. P., Azebaze, A. G. B., Etoa, F. X., Meyer, M., Bodo, B., & Nkengfack, A.E. (2007): Antimicrobial Activity of the Methanolic Extracts and Compounds from Vismia laurentii De Wild (Guttiferae). Journal of Ethnopharmacology, 109, 372-379.

Li, Y., Guo, F., Guan, Y., Chen, T., Ma, K., Zhang, L., Wang, Z., Su, Q., Feng, L., Liu, Y., & Zhou, Y. (2020). Novel Anthraquinone Compounds Inhibit Colon Cancer Cell Proliferation via the Reactive Oxygen Species/JNK Pathway. Molecules, 25(7), 1672.

Liler, M. (1971). Reaction Mechanisms in Sulphuric Acid and other Strong Acid Solutions, Volume 23. Academic Press.

Madje, B. R., Shelke, K. F., Sapkal, S. B., Kakade, G. K., & Shingare, M. S. (2010). an Efficient One-Pot Synthesis of Anthraquinone Derivatives Catalyzed by Alum in Aqueous Media. Green Chemistry Letters and Reviews, 3, 269–273.

Manojlovic, N. T., Vasiljevic, P. J., Gritsanapan, W., Supabphol, R., & Manojlovic, I. (2010). Phytochemical and antioxidant studies of Laurera benguelensis growing in Thailand. Biological Research, 43, 169–176.

Masi, M., & Evidente, A. (2020). Fungal Bioactive Anthraquinones and Analogues Title. Toxins, 12(11), 714.

Malterud, K. E., Farbrot., T. L., Huse, A. E., & Sund, R. B. (1993): Antioxidant and Radical Scavenging Effects of Anthraquinones and Anthrones. Pharmacology, 47, 77-85.

Murschell, A. E., & Sutherland, T. (2010). Anthraquinone-Based Discotic Liquid Crystals. Langmuir, 26, 12859–12866.

Naeimi, H., & Namdari, R. (2008). Facile, Efficient and One-Pot Synthesis of Anthraquinone Derivatives Catalyzed by AlCl3/H2SO4 under Heterogeneous and Mild Conditions. Chinese Journal of Catalysis, 29, 86–90.

Park, B. S., Lee, H. K., Lee, S. E., Piao, X. L., Takeoka, G. R., Wong, R. Y., Ahn, Y. J., & Kim, J. H. (2006): Antibacterial Activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Heliobacter pylori. Journal of Ethnopharmacology, 105, 255-262.

Prinz, H., Wiegrebe, W., & Müller, K. (1996). Synthesis of Anthracenones. 1. Sodium Dithionite Reduction of peri-Substituted Anthracenediones. Journal of Organic Chemistry, 61, 2853–2856.

Shamim, G., Ranjan, S. K., Pandey, D. M., & Ramani, R. (2014). Biochemistry and biosynthesis of insect pigments. European Journal of Entomology, 111(2), 149–164.

Shyamasundar, N., & Caluwe, P. (1981). Lithium Aluminum Hydride Reduction of peri-Alkoxy-9,10-anthraquinones. Journal of Organic Chemistry, 46, 1552–1557.

Solomon, T. W. G., & Fryhle, C. B. (2011). Organic Chemistry (10th ed.). John Wiley & Sons.

Xu, K., Wang, P., Wang, L., Liu, C., Xu, S., Cheng, Y., Wang, Y., & Li, Q. (2014). Quinone Derivatives from the Genus Rubia and Their Bioactivities. Chemistry & Biodiversity, 11, 341–363.

Zengin, G., Locatelli, M., Ceylan, R., & Aktumsek, A. (2016). Anthraquinone profile, antioxidant and enzyme inhibitory effect of root extracts of eight Asphodeline taxa from Turkey: can Asphodeline roots be considered as a new source of natural compounds? Journal of Enzyme Inhibition and Medicinal Chemistry, Volume 31(5), 754–759.


Full Text: PDF

DOI: 10.15408/jkv.v8i2.25279

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Siti Nurbayti, Didin Mujahidin, Yana Maolana Syah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.