Synthesis of Antibacterial and Biodegradable Bioplastic Based on Shrimp Skin Chitosan and Durian Skin Cellulose with the Microwave Assistance

Mashuni Mashuni, La Ode Ahmad, Emiliana Sandalayuk, Fitri Handayani Hamid, M Jahiding, Andi Muhammad Naufal Khaeri

Abstract


This study aimed to obtain the best composition in the synthesis of antibacterial bioplastics made from chitosan from shrimp skin (SS) and cellulose from durian skin (DS). The research method began with the isolation of chitin from SS. Then it was deacetylated using a microwave (MW) at 60 °C for 15 minutes at 400 watts of power in an alkaline solution. The extraction of cellulose from DS through delignification using the MW for 20 minutes, 300 watts of power in Na2SO3 solution. Synthesis of bioplastics is made from variations in the composition of chitosan (8, 12 and 16% w/w), cellulose and glycerol as a plasticizer. The characterization of bioplastics with FTIR obtained functional groups O–H, C–H, C=O, C–N and N–H amines, and SEM characterization obtained bioplastic has fibre and pore size 15.429 µm. The best bioplastic characteristics were the composition of 12 % chitosan, with tensile strengths of 13.28 Mpa, water resistance of 79 % and the ability to degrade 52.67% after 15 days have met international plastic standards (ASTM 5336). The antibacterial activity of bioplastics against Escherichia coli and Staphylococcus aureus with the Disc diffusion method showed the presence of moderate zones category of inhibition so that the resulting bioplastics can be recommended as food packaging that is environmentally friendly and antibacterial.


Keywords


Antibacterial; bioplastic; cellulose; chitosan; microwave

References


Alam, M. N., Kumalasari, K., Nurmalasari, N., & Illing, I. (2018). Pengaruh komposisi kitosan terhadap sifat biodegradasi dan water uptake bioplastik dari serbuk tongkol jagung. Al-Kimia, 6(1), 24–33.

Asngad, A., Amelia, R., & Aeni, N. (2018). Pemanfaatan Kombinasi Kulit Kacang Dengan Bonggol Pisang Dan Biji Nangka Untuk Pembuatan Plastik Biodegradable Dengan Penambahan Gliserol. Bioeksperimen: Jurnal Penelitian Biologi, 4(1), 11–19. https://doi.org/10.23917/bioeksperimen.v4i1.5924

Baharuddin, S., & Isnaeni, D. (2020). Isolasi dan Uji Aktivitas Kitosan Cangkang Kerang Bulu (Anadara inflata) sebagai Antibakteri terhadap Staphylococcus epidermidis dan Escherichia coli. MPI (Media Pharmaceutica Indonesiana), 3(2), 60–69. https://doi.org/10.24123/mpi.v3i2.3181

Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348–356. https://doi.org/10.1016/j.ijbiomac.2017.01.122

Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A., & Kenny, J. M. (2013). Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 119(2), 236–243. https://doi.org/10.1016/j.jfoodeng.2013.05.026

da Silva, R. C., de Aguiar, S. B., da Cunha, P. L. R., de Paula, R. C. M., & Feitosa, J. P. A. (2020). Effect of microwave on the synthesis of polyacrylamide-g-chitosan gel for azo dye removal. Reactive and Functional Polymers, 148, 104491. https://doi.org/10.1016/j.reactfunctpolym.2020.104491

Dewi, R., Nasrun, Zulnazri, & R, M. (2017). Penambahan Kitosan Sebagai Anti Bakteri pada Termoplastik Pati Sagu Termodifikasi. Proceeding Seminar Nasional Politeknik Negeri Lhokseumawe.

Fackler, K., Stevanic, J. S., Ters, T., Hinterstoisser, B., Schwanninger, M., & Salmén, L. (2011). FT-IR imaging microscopy to localise and characterise simultaneous and selective white-rot decay within spruce wood cells. Holzforschung, 65(3), 411–420. https://doi.org/10.1515/HF.2011.048

García-Ramón, J. A., Carmona-García, R., Valera-Zaragoza, M., Aparicio-Saguilán, A., Bello-Pérez, L. A., Aguirre-Cruz, A., & Alvarez-Ramirez, J. (2021). Morphological, barrier, and mechanical properties of banana starch films reinforced with cellulose nanoparticles from plantain rachis. International Journal of Biological Macromolecules, 187, 35–42. https://doi.org/10.1016/j.ijbiomac.2021.07.112

Haghighi, H., Licciardello, F., Fava, P., Siesler, H. W., & Pulvirenti, A. (2020). Recent advances on chitosan-based films for sustainable food packaging applications. Food Packaging and Shelf Life, 26, 100551. https://doi.org/10.1016/j.fpsl.2020.100551

Hisbiyah, A., Nurfadlilah, L., & Hidayah, R. (2021). Antibacterial Activity of Sugarcane Bagasse Nanocellulose Biocomposite with Chitosan Against Escherichia coli. Jurnal Kimia Valensi, 1(1), 28–37. https://doi.org/10.15408/jkv.v1i1.18718

Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. American Journal of Analytical Chemistry, 09(06), 303–310. https://doi.org/10.4236/ajac.2018.96023

Ilmiawati, C., Reza, M., Rahmatini, & Rustam, E. (2016). Edukasi Pemakaian Plastik Sebagai Kemasan Makanan dan Minuman serta Resikonya Terhadap Kesehatan pada Komunitas di Kecamatan Bungus Teluk Kabung Padang. Jurnal Ilmiah Pengabdian Kepada Masyarakat, 23(4), 1–8.

Kamsiati, E., Herawati, H., & Purwani, E. Y. (2017). The Development Potential of Sago and Cassava Starch-Based Biodegradable Plastic in Indonesia. Jurnal Penelitian Dan Pengembangan Pertanian, 36(2), 67–76. https://doi.org/10.21082/jp3.v36n2.2017.p67-76

Kongkaoroptham, P., Piroonpan, T., & Pasanphan, W. (2021). Chitosan nanoparticles based on their derivatives as antioxidant and antibacterial additives for active bioplastic packaging. Carbohydrate Polymers, 257(January), 117610. https://doi.org/10.1016/j.carbpol.2020.117610

Kumar, A., Kuang, Y., Liang, Z., & Sun, X. (2020). Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Materials Today Nano, 11, 100076. https://doi.org/10.1016/j.mtnano.2020.100076

Lalegani, Z., Ebrahimi, S. A. S., Hamawandi, B., La Spada, L., & Toprak, M. S. (2020). Modeling, design, and synthesis of gram-scale monodispersed silver nanoparticles using microwave-assisted polyol process for metamaterial applications. Optical Materials, 108, 110381. https://doi.org/10.1016/j.optmat.2020.110381

Lim, S. H., & Hudson, S. M. (2004). Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydrate Research, 339(2), 313–319. https://doi.org/10.1016/j.carres.2003.10.024

Lismeri, L., Poppy, M. Z., Tika, N., & Yuli, D. (2016). Sintesis Selulosa Asetat dari Limbah Batang Ubi Kayu. Jurnal Rekayasa Kimia & Lingkungan, 11(2), 82. https://doi.org/10.23955/rkl.v11i2.5407

Lismeri, L., Yuli, D., Mitra, D. S., & Muhammad, I. I. (2019). Pengaruh Suhu dan Waktu Pretreatment Alkali pada Isolasi Selulosa Limbah Batang Pisang. Journal of Chemical Process Engineering, 4(2655), 18–22.

López, O. V., & García, M. A. (2012). Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization. Materials Science and Engineering C, 32(7), 1931–1940. https://doi.org/10.1016/j.msec.2012.05.035

Ma, M. G., Fu, L. H., Sun, R. C., & Jia, N. (2012). Compared study on the cellulose/CaCO3 composites via microwave-assisted method using different cellulose types. Carbohydrate Polymers, 90(1), 309–315. https://doi.org/10.1016/j.carbpol.2012.05.043

Mashuni, M., Natsir, M., Lestari, W. M., Hamid, F. H., & Jahiding, M. (2021). Pemanfaatan Kitosan dari Cangkang Kepiting Bakau (Scylla serrata) dengan Metode Microwave sebagai Bahan Dasar Kapsul Obat. ALCHEMY Jurnal Penelitian Kimia, 17(1), 74. https://doi.org/10.20961/alchemy.17.1.42038.74-82

Poletto, M., Ornaghi Júnior, H. L., & Zattera, A. J. (2014). Native cellulose: Structure, characterization and thermal properties. Materials, 7(9), 6105–6119. https://doi.org/10.3390/ma7096105

Poletto, M., Pistor, V., Zeni, M., & Zattera, A. J. (2011). Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation and Stability, 96(4), 679–685. https://doi.org/10.1016/j.polymdegradstab.2010.12.007

Pooja, N. S., & Padmaja, G. (2017). Microwave-Assisted Alkali Delignification Coupled with Non-Ionic Surfactant Effect on the Fermentable Sugar Yield from Agricultural Residues of Cassava. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 2(2).

Popescu, M. C., Popescu, C. M., Lisa, G., & Sakata, Y. (2011). Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. Journal of Molecular Structure, 988(1–3), 65–72. https://doi.org/10.1016/j.molstruc.2010.12.004

Pratiwi, N., Hanafiah, D. S., & Siregar, L. A. M. (2018). Identifikasi Karakter Morfologis Durian(Durio Zibethinus Murr) di Kecamatan Tigalingga dan Pegagan Hilir Kabupaten Dairi Sumatera Utara. Jurnal Agroekoteknologi, 6(2), 200–208.

Pratiwi, R., Rahayu, D., & Barliana, M. I. (2016). Pemanfaatan Selulosa Dari Limbah Jerami Padi (Oryza sativa) Sebagai Bahan Bioplastik. Indonesian Journal of Pharmaceutical Science and Technology, 3(3), 83. https://doi.org/10.15416/ijpst.v3i3.9406

Priscilla, J., Arul Dhas, D., Hubert Joe, I., & Balachandran, S. (2020). Experimental and theoretical spectroscopic analysis, hydrogen bonding, reduced density gradient and antibacterial activity study on 2-Phenyl quinoline alkaloid. Chemical Physics, 536(April), 110827. https://doi.org/10.1016/j.chemphys.2020.110827

Queiroz, M. F., Melo, K. R. T., Sabry, D. A., Sassaki, G. L., & Rocha, H. A. O. (2015). Does the use of chitosan contribute to oxalate kidney stone formation? Marine Drugs, 13(1), 141–158. https://doi.org/10.3390/md13010141

Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., Glenn, G., Orts, W. J., & Imam, S. H. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1), 83–92. https://doi.org/10.1016/j.carbpol.2010.01.059

Santana, R. F., Bonomo, R. C. F., Gandolfi, O. R. R., Rodrigues, L. B., Santos, L. S., dos Santos Pires, A. C., de Oliveira, C. P., da Costa Ilhéu Fontan, R., & Veloso, C. M. (2018). Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal of Food Science and Technology, 55(1), 278–286. https://doi.org/10.1007/s13197-017-2936-6

Sari, P. D., A., P. W., & D, H. (2018). Delignifikasi Bonggol Jagung dengan Metode Microwave Alkali. Jurnal-Jurnal Pertanian AGRIKA, 1(2), 164–172.

Setyawati, A., Pranowo, D., & Kartini, I. (2016). Effect of Microwave Irradiationon Synthesis of Chitosan for Biomedical Grade Applications of Biodegradable Materials. Jurnal Eksakta, 16(2), 137–148. https://doi.org/10.20885/eksakta.vol16.iss2.art8

Situmorang, F. U., Hartiati, A., & Harsojuwono, B. A. (2019). The Effect of the Concentration of Taro Tuber Starch (Colocasia esculenta) and Plasticizer Type on The Characteristics of Bioplastics. Jurnal Rekayasa Dan Manajemen Agroindustri, 7(3), 457. https://doi.org/10.24843/jrma.2019.v07.i03.p13

Song, C., Yu, H., Zhang, M., Yang, Y., & Zhang, G. (2013). Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. International Journal of Biological Macromolecules, 60, 347–354. https://doi.org/10.1016/j.ijbiomac.2013.05.039

Vino, A. B., Ramasamy, P., Shanmugam, V., & Shanmugam, A. (2012). Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pacific Journal of Tropical Biomedicine, 2, 334–341. https://doi.org/10.1016/S2221-1691(12)60184-1

Widiatmono, B. R., Sulianto, A. A., & Debora, C. (2021). Biodegradabilitas Bioplastik Berbahan Dasar Limbah Cair Tahu dengan Penguat Kitosan dan Plasticizer Gliserol. Jurnal Sumberdaya Alam Dan Lingkungan, 8(1), 21–27. https://doi.org/10.21776/ub.jsal.2021.008.01.3

Wu, C. S., Hsu, Y. C., Liao, H. T., & Cai, Y. X. (2015). Antibacterial activity and in vitro evaluation of the biocompatibility of chitosan-based polysaccharide/polyester membranes. Carbohydrate Polymers, 134, 438–447. https://doi.org/10.1016/j.carbpol.2015.08.021

Xu, F., Yu, J., Tesso, T., Dowell, F., & Wang, D. (2013). Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Applied Energy, 104, 801–809. https://doi.org/10.1016/j.apenergy.2012.12.019

Yin, L., Yin, F., Huang, D., Zheng, W., Li, L., & Fu, Y. (2021). Synergistic enhancement of toughness and antibacterial properties of plant cellulose/glycerin/chitosan degradable composite membranes. Journal of Chemical Technology and Biotechnology, 96(2), 491–501. https://doi.org/10.1002/jctb.6566

Zaeni, A., Fuadah, B., & Sudiana, I. N. (2017). Efek Microwave pada Proses Deasetilasi Kitin dari Limbah Cangkang Udang. Jurnal Aplikasi Fisika, 13(2), 48–53.

Zavareze, E. D. R., Pinto, V. Z., Klein, B., El Halal, S. L. M., Elias, M. C., Prentice-Hernández, C., & Dias, A. R. G. (2012). Development of oxidised and heat-moisture treated potato starch film. Food Chemistry, 132(1), 344–350. https://doi.org/10.1016/j.foodchem.2011.10.090


Full Text: PDF

DOI: 10.15408/jkv.v8i1.23233

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Mashuni Mashuni, La Ode Ahmad, Emiliana Sandalayuk, Fitri Handayani Hamid, M Jahiding, Andi Muhammad Naufal Khaeri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.