Iron (II) Removal Using Activated Silica/Lignin Composite: Kinetic and Equilibrium Studies

Atiek Rostika Noviyanti, Yati B Yuliyati, Ghaissani Nur Maulani, Irwan Kurnia


Recently, the Indonesian industry has been rapidly developed and affects the number of heavy metal ions waste such as iron (II). Iron (II) is dangerous to the environment because it is harmful to aquatic systems and carcinogenic. This research used activated silica/lignin to remove iron (II) in water. The activated silica/lignin was isolated from rice husk and activated by sodium periodate with a 10% weight of lignin in the range of pH of 2–5 at 55 °C. Then its specific surface area was analyzed with the methylene blue adsorption method. It is found that the condition in pH 2 showed the best isolation and activation condition to achieve the lowest impurity (cellulose and hemicellulose) in silica/lignin composite. Furthermore, the activated silica/lignin composite, isolated in pH 2, has a specific surface area of 366.6372 m2/g with the highest adsorption value of 1.1825 mg g-1 for iron (II) ions solution (5 ppm) within a contact time of 90 minutes. Moreover, the adsorption kinetics followed the pseudo-second-order kinetic model, also the adsorption isotherm fitted with the Freundlich model. This research showed that activated silica/lignin could be used as an alternative of environmentally friendly material for iron (II) removal in water.


Rice husk, activated silica-lignin, adsorption, iron, sodium periodate


Aidha NN. 2013. Aktivasi Zeolit secara Fisika dan Kimia Untuk Menurunkan Kadar Kesadahan (Ca dan Mg) Dalam Air Tanah. Jurnal Kimia Kemasan. 35 (1): 58–64.

Allen SJ, Gan Q, Matthews R, Johnson. 2003. Comparison of Optimised Isotherm Models for Basic Dye Adsorption by Kudzu. 88 (2): 143-152.

Anirudhan TS, Radhakrishnan PG. 2008. Thermodynamics and Kinetics of Adsorption of Cu(II) from Aqueous Solutions onto A New Cation Exchanger Derived from Tamarind Fruit Shell. The Journal of Chemical Thermodynamics. 40 (4): 702-709.

Bratskaya S, Pestovb A, Yatlukb Y. 2009. Heavy Metals Removal by Occulation/Precipitation Using N-(2-carboxyethyl) Chitosans. Colloids Surface A: Physicochemistry Engineering Aspect. 339: 140-144.

Borbely G, Nagy E. 2009. Removal of Zinc and Nickel Ions by Complexation-Membrane Filtration Process from Industrial Wastewater. Desalination. 240: 218-226.

Datta R. 1981. Acidogenic Fermentation of Lignocellulose-Acid yield and Conversion of Components. Exxon Research and Engineering Company. 23: 60–64.

Dbrowski A, Hubicki Z, Podkoscielny P, Robensb E. 2004. Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-Exchange Method. Chemosphere 56, 91-106.

Febriyani SK. 2018. Pengaruh Natrium Periodat Pada Daya Serap Silika-Lignin Terhadap Kromium (VI). Thesis, Department of Chemistry, Universitas Padjadjaran

Gosselink RJA, van Dam JEG, de Jong E, Gellerstedt G, Scott EL, Sanders JPM. 2011. Effect of Periodate on Lignin for Wood Adhesive Application. De Gruyter. 65(2): 155-162.

Gupta VK, Suhas. 2009. Application of Low-Cost Adsorbents for Dye Removal – A Review. Journal of Environmental Management. 90 (8): 2313-2342.

Handayani A. 2010. Penggunaan Selulosa Daun Nanas Sebagai Adsorben Logam Berat Cd (II). Thesis, Department of Chemistry, Universitas Sebelas Maret.

Janekarn I, Hunt AJ, Ngernyen Y, Youngme S, Supanchaiyamat N. 2020 Graphitic Mesoporous Carbon-Silica Composites from Low-Value Sugarcane By-Products for The Removal of Toxic Dyes from Wastewaters. R. Soc. Open Sci. 7: 200438.

Khairunnisa S. 2019. Komposisi Silika/Lignin Sekam Padi Teraktivasi Natrium Periodat pada Variasi pH. Thesis, Department of Chemistry, Universitas Padjadjaran.

Khaled A, Nemr AE, El-Sikaily A, Abdelwahab O. 2009. Removal of Direct N Blue-106 from Artificial Textile Dye Effluent using Activated Carbon from Orange Peel: Adsorption Isotherm and Kinetic Studies. Journal of Hazardous Material. 165: 100–110.

Klapiszewski L, Przemysław B, Marcin W, Marta J, Katarzyna K, Teofil J. 2015. Silica Conjugated with Kraft Lignin and Its Use as a Novel ‘Green’ Sorbent for Hazardous Metal Ions Removal. Chemical Engineering Journal. 260: 684-693.

Kozhevnikov AY, Ul’yanovskaya SL, Semushina MP, Pokryshkin SA, Ladesov AV, Pikovskoi II, Kosyakov DS. 2017. Modification of Sulfate Lignin with Sodium Periodate to Obtain Sorbent of 1,1-Dimethylhydrazine. Russian Journal of Applied Chemistry. 90 (4): 416−422.

Kravchenko TA, Polyanskiy LL, Krysanov VA, Zelensky ES, Kalinitchev A, Hoell W. 2009. Chemical Precipitation of Copper from Copper to Zinc Solutions onto Selective Sorbents. Hydrometallurgy. 95: 141-144.

Nurhasni. 2014. Sekam Padi untuk Menyerap Ion Logam Tembaga dan Timbal dalam Air Limbah. Jurnal Kimia Valensi. 4(1): 36-44

Qiu J, Wang Z, Li H, Xu L, Peng J, Zhai M, Yang C, Li J, Wei G. 2009. Adsorption of Cr(VI) Using Silica-based Adsorbent Prepared by Radiation-Induced Grafting. Journal of Hazardous Materials. 166: 270-276.

Wibowo EAP, Hardyanti IS, Nurani I, HP DSH, Rizkita AD. 2017. Studi Penurunan Kadar Logam Besi (Fe) dan Logam Tembaga (Cu) pada Air Embung Menggunakan Adsorben Nanosilika. Jurnal Ilmiah Sains. 17 (2): 131-134.

Wu Y, Zhang S, Guo X, Huang H. 2008. Adsorption of Chromium (III) on Lignin. Bioresource Technology. 99: 7709-7715.

Xiong W, Yang D, Zhong R, Li Y, Zhou H, Qiu X. 2015. Preparation of Lignin-Based Silica Composite Submicron Particles from Alkali Lignin and Sodium Silicate in Aqueous Solution Using A Direct Precipitation Method. Industrial Crops and Products. 74: 285–292.

Yuliyati YB, Listiani S, Solihudin S, Noviyanti AR. 2018. Isolation of Silica-Lignin Composites from Rice Husk and Their Adsorption to Cr (VI). ALCHEMY Jurnal Penelitian Kimia. 14 (2) 267-276.

Full Text: PDF

DOI: 10.15408/jkv.v8i1.22715


  • There are currently no refbacks.

Copyright (c) 2022 Atiek Rostika Noviyanti, Yati B Yuliyati, Ghaissani Nur Maulani, Irwan Kurnia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.