Synthesis Strategy of Cinnamaldehyde Derivate Compound from Cinnamon Bark Oil (Cinnamomum burmanii) to 2-hydroxycinnamaldehyde

Vina Octavia Azzahra, Warsito Warsito, Elvina Dhiaul Iftitah, Desytrifa Rosenny Ompusunggu, Dwi Nanda Cakra Wiguna, Fadhil Akbar Sugiarto


Cinnamaldehyde is the major secondary metabolite of Cinnamon (Cinnamomum burmanii) that has various benefits in medical fields. One of the cinnamaldehyde derivatives, 2-Hydroxycinnamaldehyde (HC), has been shown to have good anticancer activity. In contrast to its activity, the synthesis method of HC from pure cinnamaldehyde has not been studied before. This research studies the synthesis of HC with a semisynthetic approach from the natural ingredient cinnamaldehyde. This study was initiated by purifying cinnamaldehyde from cinnamon bark oil with the salting method using a saturated sodium bisulfite solution. Cinnamaldehyde is converted into HC through the synthesis design in three-reaction steps, including nitration using nitric acid-acetic acid anhydride at 0-5 °C, reduction in mild condition by reflux using NH4Cl-Fe in methanol-water solution, and diazotation-hydrolysis using NaNO2-HCl at 5 °C. Optimization of the synthesis was evaluated to get the best method according to yield and characterized using TLC, UV-Vis, FTIR, and GC-MS/LC-MS. The isolated CD has a purity of up to 100% with a yield of about 36%. The 2-nitrocinnamaldehyde (NC) product from nitration was analyzed with ethanol and n-hexane (1:1) Rf = 0.84 and showed high purity with a 26% yield. The reduction product 2-aminocinnamaldehyde (Rf = 0.48) and 2-hydroxycinamaldehyde (Rf = 0.19) as a product from diazotation-hydrolysis obtained in moderate yield.


2-hydroxycinnamaldehyde; cinnamaldehyde; hydrolysis; nitration; reduction


Al-Fekaiki, D. F., Niamah, A. K., & Al-Sahlany, S. T. G. (2017). Extraction and identification of essential oil from Cinnamomum Zeylanicum barks and study the antibacterial activity. Journal of Microbiology, Biotechnology and Food Sciences, 7(3), 312–316.

Bak, R. R., & Smallridge, A. J. (2004). A fast and mild method for nitration of aromatic rings. Tetrahedron Letters, 179(2), 221–226.

D Patil, R. (2015). Chemoselective Reduction of Nitroarenes to Aromatic Amines with Commercial Metallic Iron Powder in Water Under Mild Reaction Conditions. Organic Chemistry: Current Research, 04(04).

Etika, S. B., Nasra, E., & Rilaztika, I. (2018). Synthesis and Characterization of C-Cinnamal Calix [4] Resorsinarena from Cinnamon Oil Waste West Sumatra. IOP Conference Series: Materials Science and Engineering, 335(1), 012028.

Gan, F. F., Chua, Y. S., Scarmagnani, S., Palaniappan, P., Franks, M., Poobalasingam, T., Bradshaw, T. D., Westwell, A. D., & Hagen, T. (2009). Structure-activity analysis of 2′-modified cinnamaldehyde analogues as potential anticancer agents. Biochemical and Biophysical Research Communications, 387(4), 741–747.

Herdwiani, W., Leviana, F., Sari, R., Hertiani, T., & Khoirunisa, A. (2014). Uji Keamanan dan Uji Aktivitas Sitotoksik Minyak Kayu Manis ( Cinnamomum burmanii ). Jurnal Farmasi Indonesia, 1(2), 47–57.

Hong, S. H., Ismail, I. A., Kang, S. M., Han, D. C., & Kwon, B. M. (2016). Cinnamaldehydes in Cancer Chemotherapy. Phytotherapy Research, 30(5), 754–767.

Hwang, H., Jeon, H., Ock, J., Hong, S. H., Han, Y. M., Kwon, B. M., Lee, W. H., Lee, M. S., & Suk, K. (2011). 2′-Hydroxycinnamaldehyde targets low-density lipoprotein receptor-related protein-1 to inhibit lipopolysaccharide-induced microglial activation. Journal of Neuroimmunology, 230(1–2), 52–64.

Jeong, H. W., Kim, M. R., Son, K. H., Young Han, M., Ha, J. H., Garnier, M., Meijer, L., & Kwon, B. M. (2000). Cinnamaldehydes inhibit cyclin dependent kinase 4/cyclin D1. Bioorganic and Medicinal Chemistry Letters, 10(16), 1819–1822.

Kim, J. H., Lee, S., Kwon, M. G., Park, Y. S., Choi, S. K., & Kwon, B. M. (2004). One-Step Synthesis of ortho-Hydroxycinnamaldehyde. Synthetic Communications, 34(7), 1223–1228.

Kwon, B. M., Cho, Y. K., Lee, S. H., Nam, J. Y., Bok, S. H., Chun, S. K., Kim, J. A., & Lee, I. R. (1996). 2′-Hydroxycinnamaldehyde from Stem Bark of Cinnamomum cassia. Planta Medica, 62(2), 183–184.

Larasati, Y. A., & Meiyanto, E. (2018). Revealing the Potency of Cinnamon as an Anti-cancer and Chemopreventive Agent. Indonesian Journal of Cancer Chemoprevention, 9(1), 47.

Lee, M. A., Park, H. J., Chung, H. J., Kim, W. K., & Lee, S. K. (2013). Antitumor activity of 2-hydroxycinnamaldehyde for human colon cancer cells through suppression of β-catenin signaling. Journal of Natural Products, 76(7), 1278–1284.

Lu, Y., Li, Y., Zhang, R., Jin, K., & Duan, C. (2013). Regioselective ortho-nitration of N-phenyl carboxamides and primary anilines using bismuth nitrate/acetic anhydride. Tetrahedron, 69(45), 9422–9427.

Mardina, P., Prathama, H. A., & Hayati, D. M. (2016). Pengaruh Waktu Hidrolisis Dan Konsentrasi Katalisator Asam Sulfat Terhadap Sintesis Furfural Dari Jerami Padi. Konversi, 3(2), 1.

Méndez, M. V., Heredia, D. A., Larghi, E. L., Bracca, A. B. J., & Kaufman, T. S. (2017). Efficient total synthesis of neocryptolepine and synthetic access to 6-methylquinindoline from a common intermediate. RSC Advances, 7(45), 28298–28307.

Momtaz, S., Hassani, S., Khan, F., Ziaee, M., & Abdollahi, M. (2018). Cinnamon, a promising prospect towards Alzheimer’s disease. Pharmacological Research, 130, 241–258.

Ngurah, B. I. G. ., Tokan, M. K., & Saputra, A. (2018). Characterization of Cinnamadehyde Compound Isolated from Cinnamon Oil and Its Salmonella Typhy. Journal of Applied Chemical Science, 5(2), 469–472.

Prakash, S., Nandam, S. S., & Vangalapati, M. (2012). Optimization of Physico-Chemical Parameters for the Extraction of Phenolic Components from Terminalia chebula Species. Research in Pharmacy, 2(5), 1–08.

Reynold, J. G. (2018). Salt Solubilities in Aqueous Solutions of NaNO3, NaNO2, NaCl, andNaOH: A Hofmeister-like Series for Understanding Alkaline Nuclear Waste. ACS OMEGA, 3, 15149–15157.

Robert E, B., & Bellis, M. P. (1953). Organic Synthesis : o-NITROCINNAMALDEHYDE. In Organic Syntheses (Vol. 33, p. 60).

Shreaz, S., Wani, W. A., Behbehani, J. M., Raja, V., Karched, M., Ali, I., Siddiqi, W. A., & Hun, L. T. (2016). Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia, 112, 116–131.

Suryanti, V., Wibowo, F. R., Khotijah, S., & Andalucki, N. (2018). Antioxidant Activities of Cinnamaldehyde Derivatives. IOP Conference Series: Materials Science and Engineering, 333(1).

Sudarma, I. M., Ulfa, M., & Sarkono, S. (2010). Chemical Transformation of Eugenol Isolated From Clove Oil To 4-Allyl-2-Methoxy-6-Sulfonicphenol and 4-Allyl-2-Methoxy-6-Aminophenol. Indonesian Journal of Chemistry, 9(2), 267–270.

Taniguchi, T., Imoto, M., Takeda, M., Nakai, T., Mihara, M., Iwai, T., Ito, T., Mizuno, T., Nomoto, A., & Ogawa, A. (2009). Hydrolysis of Diazonium Salts Using a Two-Phase System (CPME and Water). Heteroatom Chemistry, 20(4), 232–234.

Wasia, N. H., Sudarma, I. M., Savalas, L. R. T., & Hakim, A. (2017). Isolasi Senyawa Sinamaldehid dari Batang Kayu Manis (Cinnamomum burmanii) dengan Metode Kromatografi Kolom. Jurnal Pijar Mipa, 12(2), 91–94.

Zhang, Q., Liu, Y., Li, G., & Li, J. (2011). Preparation of p-hydroxybenzaldehyde by hydrolysis of diazonium salts using rotating packed bed. Chinese Journal of Chemical Engineering, 19(1), 140–144.

Full Text: PDF

DOI: 10.15408/jkv.v8i1.22686


  • There are currently no refbacks.

Copyright (c) 2022 Warsito Warsito

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.