The Effect of Acetonitrile Solvent on the Quantitative Determination of Europium (III) by Voltammetry and its Optimization using the Box-Behnken Design

Uji Pratomo, Ari Hardianto, Yeni Wahyuni Hartati, Husein Hernandi Bahti, Santhy Wyantuti


There is often a drawback during the determination of Eu in aqueous solvents using the voltammetric method. The current signal from water can reduce that of the element, which causes difficulty while separating the Eu signal from other rare earth elements (REE). Therefore, this study used acetonitrile as a solvent due to its high electrical conductivity and wide potential range. The optimum conditions for the determination of Eu in acetonitrile using the Box-Behnken design include 74.56 seconds deposition time, 0.125 V amplitude modulation, and -2.0 V potential deposition. The platinum electrode's performance showed a recovery value of 98.91% and accuracy and precision (in %RSD) of 96.67% and 1.11%, respectively. Furthermore, detection and quantitation limits of 0.6 mg/L and 5.1 mg/L were recorded from the analysis. It concluded that the differential pulse voltammetry method was applied to determine the presence of Eu in acetonitrile.


Acetonitrile, Box-Behnken Design, Europium, Differential pulse voltammetry


Bezerra, M.A., Santelli, R.E., Oliveiraa, E.P., Villar, L.S., & Escaleira, L.A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76:965–977.

Bhattacharya, S., Samuel, J.L., & Reza, M. 2000. Spektrophotometric Determination Of Europium in Lanthanide and Other Mixtures By Use Of Methylene Blue. Talanta. 27:59-60.

Chien, N.X., Khai, P.N., Hien, T.D., Nguyen, D., Bot, D.C., Van Trung, T., Cuc, N.T., Minh, L.H., Thuc, N.V., Ngan, B.T., & Van Thuan, D. 2006. The determination of rare earth elements in geological and environmental samples by inductively coupled plasma mass spectrometry. VAEC. 6:217–225.

Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G.C., Silva, E. G. P., Portugal, L.A., Reis, P. S., Souza, A. S., & Santos, W.N.L. 2007. Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta. 597:179–186.

Irawan, S. 2013. Rare Earth Element Mineral Processing in PT Timah Tbk: Workshop on Rare Earth Element Mineral Processing and Refining in Indonesia, Bandung.

Krishnamurthy, N. & Gupta, C.K. 2016. Extractive Metallurgy of Rare Earth. 2nd ed. New York: Taylor & Francis Group, LLC.

Mele, C., Sandra, R., & Lucia, D. 2013. Silver Electrodeposition From Water-Acetonitrile Mixed Solvents and Electrolytes in the Presence of Tetrabutylammonium Perchlorate. Part 1-Electrochemical nucleation on glassy carbon electrode. J. Solid State Electrochem. 13:1577-1584.

Miller, J., & Miller, J.C. Statistics and chemometrics for analytical chemistry (7th ed.). 2018. Harlow: Pearson Education Limited.

Ohnishi, K., Kan, K., Hiroyasu, S., Eri, T., Shinichi, S., & Koichi, K. 2010. Inductively Coupled Plasma Atomic Emission Spectroscopy Method For Precise Determination Of Trace Europium in Biological Fluid : A Technical Note.

Rajendran, J., Balasubramanian, G., & Thampi, P. 2008. Determination of rare earth elements in Indian coastal monazite by ICP-AES and ICP-MS analysis and their geochemical significance. Current Science. 94:1–7.

Scholz, F., & Lange, B. 1992. Abrasive stripping voltammetry-an electrochemical solid state spectroscopy of wide applicability, TrAc. Trends Anal. Chem. 11 (10):359–367.

Sharma, P., Bais,R., Singhvi,S & Bhandari,H. 2014. Voltammetri Trace Determination of Europium. International Jurnal of Chemical Studies. 2:1-4.

Skoog, D.A., West, D.M., & Holler, F.J. 2014. Fundamentals of Analytical Chemistry. Cengage Learning, Boston.

Soylak, M., & Gokhan, O. 2006. Determination of trace metals by atomic absorption spectrometry After coprecipitation with europium hydroxide. Journal of Hazardous.1130-1134.

Suhkyat, R. 2013. Potential and distribution of Indonesia mineral resources and deposits. Seminar on Acceleration Attempts to Increase Domestic Minerals Added Value. Indonesia.

Wyantuti, S., Pratomo, U., Hartati, Y.W., Anggraeni, A., & Bahti, H.H. 2018. Fast and Simultaneous Detection of Sm, Eu, Gd, Tb and Dy using combination of Voltammetry Method and Multivariate Analysis. Research Journal of Chemistry and Environment. 22:302-306.

Wyantuti, S., Pratomo, U., Hartati, Y.W., Hendrati, D., & Bahti, H.H. 2019. Aplication of Experimental Design by Differential Pulse Voltammetry for Determination of Rare Earth Elements as Complexes with diethylenetriaminepentaacetic acid (DTPA). International Journal of Recent Technology and Engineering. 8:33-37.

Wyantuti, S., Pratomo, U., Shauvina, S., Hartati, Y.W., & Bahti, H.H. 2021a. Differential pulse voltammetry study for quantitative determination of dysprosium (III) in acetonitrile solution. Int. J. Renew. Energy Dev. 10:191–199.

Wyantuti, S., Pratomo, U., Manullang, L.A., Hendrati, D., Hartati, Y.W., & Bahti, H.H. 2021b. Development of differential pulse voltammetric method for determining samarium (III) through electroanalytical study of the metal ion in acetonitrile using Box–Behnken design. Heliyon. 7:e06602.

Wyantuti, S., Oktaviani, W.R.,, Hendrati D., Hartati, Y.W., & Rahmidar, L. 2021c. Determination of Gd (III) Concentration by Voltammetry and Its Usage as a Learning Module for Chemistry Student Proceeding of ICETeP 2020: 434-437.

Zhu, Y., Yasushi, K., & Takashi, M. 2010. Effects of acetonitrile on electrodeposition of Ni from a hydrophobic ionic liquid. Electrochimica Acta. 55:9019-9023.

Full Text: PDF

DOI: 10.15408/jkv.v8i1.22508


  • There are currently no refbacks.

Copyright (c) 2022 Uji Pratomo, Ari Hardianto, Yeni Wahyuni Hartati, Husein Hernandi Bahti, Santhy Wyantuti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.