Synthesis and Characterization of Nano-sized Carbonated Calcium Hydroxyapatite (CHAp) from Rebon shrimp (Acetes erythraeus) as a Candidate for Dental Restoring Application

Ngatijo Ngatijo, Restina Bemis, Heriyanti Heriyanti, Rahmi Rahmi, Nashih Ulwan, Rahmat Basuki

Abstract


Carbonated calcium hydroxyapatite (CHAp) exhibits excellent biocompatibility with bone and teeth, making it an ideal candidate for orthopedic and dental application. However, the study of CHAp synthesis from natural material is still scarce. The purpose of this research is to synthesize and characterize of CHAp, using Rebon shrimp (Acetes erythraeus) as a calcium source. The synthesis was conducted by hydrothermal method with the variation of Ca/P ratios 1.61; 1.67; 1.73. The as-prepared CHAp was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive X-ray (SEM-EDX). The FT-IR results show that synthesized material exhibited characteristic CHAp band of hydroxide at 3448 and 1635 cm-1, carbonate at 872 and 1427 cm-1, and phosphate at 1049; 606; and 570 cm-1. The diffractogram pattern assigned the all observed peak of CHAp are in good agreement compared to CHAp database with the nano-scale size. It also observed that the high Ca/P ratio will decrease the crystallinity of CHAp. The as-prepared CHAp micrograph is agglomerates spherical form with size between 5-20 nm which build up from 18–26 nm crystallite particles. The result of this research confirmed that Rebon shrimp is the promising materials for calcium source in CHAp production.

Keywords


Dental restoring candidate material; Carbonated calcium hydroxyapatite (CHAp); Nanoparticles; Calcium Source Rebon shrimp (Acetes erythraeus)

References


Aneem, T. H., Saha, S. K., Jahan, R. A., Wong, S. Y., Li, X., & Arafat, M. T. (2019). Effects of organic modifiers and temperature on the synthesis of biomimetic carbonated hydroxyapatite. Ceramics International, 45(18), 24717–24726. https://doi.org/10.1016/j.ceramint.2019.08.211

Anggresani, L., Sari, Y. N., & Rahmadevi, R. (2021). Hydroxyapatite (HAp) From Tenggiri Fish Bones As Abrasive Material In Toothpaste Formula. Jurnal Kimia Valensi, 1(1), 1–9.

Azis, Y., Jamarun, N., Zultiniar, Arief, S., & Nur, H. (2015). Synthesis of hydroxyapatite by hydrothermal method from cockle shell (Anadara granosa). Oriental Journal of Chemistry, 7(5), 798–804.

Basuki, R., Rusdiarso, B., Santosa, S. J., & Siswanta, D. (2021). Magnetite-Functionalized Horse Dung Humic Acid (HDHA) for the Uptake of Toxic Lead (II) from Artificial Wastewater. Adsorption Science & Technology, 2021(5523513), 1–15. https://doi.org/10.1155/2021/5523513

Deb, S., & Chana, S. (2015). Biomaterials in relation to dentistry. Biomaterials for Oral and Craniomaxillofacial Applications, 17, 1–12.

Dorozhkin, S. V. (2011). Medical application of calcium orthophosphate bioceramics. Bio, 1(1), 1–51.

Elfina, S., Jamarun, N., Arief, S., & Djamaan, A. (2020). Sintesis Precipitate Calsium Carbonat Sebagai Filler Pada Plastik Ramah Lingkungan. REACTOR: Journal of Research on Chemistry and Engineering, 1(1), 1–6.

Garskaite, E., Gross, K. A., Yang, S. W., Yang, T. C. K., Yang, J. C., & Kareiva, A. (2014). Effect of processing conditions on the crystallinity and structure of carbonated calcium hydroxyapatite (CHAp). CrystEngComm, 16(19), 3950–3959. https://doi.org/10.1039/c4ce00119b

Gieroba, B., Przekora, A., Kalisz, G., Kazimierczak, P., Song, C. L., Wojcik, M., Ginalska, G., Kazarian, S. G., & Sroka-Bartnicka, A. (2021). Collagen maturity and mineralization in mesenchymal stem cells cultured on the hydroxyapatite-based bone scaffold analyzed by ATR-FTIR spectroscopic imaging. Materials Science and Engineering C, 119(October 2020), 111634. https://doi.org/10.1016/j.msec.2020.111634

Hanura, A. B., Trilaksani, W., & Suptijah, P. (2017). Karakterisasi Nanohidroksiapatit Tulang Tuna Thunnus sp Sebagai Sediaan Biomaterial. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 9(2), 619–629.

Hien, V. D., Huong, D. Q., & Bich, P. T. N. (2010). Study of the Formation of Porous Hydroxyapatite Ceramics from Corals via Hydrothermal Process. Journal of Chemistry, 48(5), 591–596.

Lak, A., Mazloumi, M., Mohajerani, M., Kajbafvala, A., Zanganeh, S., Arami, H., & Sadrnezhaad, S. K. (2008). Self-Assembly of Dandelion-Like Hydroxyapatite Nanostructures Via Hydrothermal Method. Journal of the American Ceramic Society, 91(10), 3292–3297.

LeGeros, R. Z. (2008). Calcium phosphate-based osteoinductive materials. Chemical Reviews, 108(11), 4742–4753.

Lü, X. Y., Fan, Y. Bin, Gu, D., & Cui, W. (2007). Preparation and Characterization of Natural Hydroxyapatite from Animal Hard Tissues. Key Engineering Materials, 342–343, 213–216. https://doi.org/10.4028/www.scientific.net/kem.342-343.213

Matinlinna, J. P. (2013). Processing and bonding of dental ceramics. In Non-metallic biomaterials for tooth repair and replacement (pp. 129–160). Elsevier.

Mekmene, O., Quillard, S., Rouillon, T., Bouler, J. M., Piot, M., & Gaucheron, F. (2009). Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Science and Technology, 89(3–4), 301–316. https://doi.org/10.1051/dst/2009019

Odusote, J. K., Danyuo, Y., Baruwa, A. D., & Azeez, A. A. (2019). Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. Journal of Applied Biomaterials and Functional Materials, 17(2). https://doi.org/10.1177/2280800019836829

Okada, M., & Matsumoto, T. (2015). Synthesis and modification of apatite nanoparticles for use in dental and medical applications. Japanese Dental Science Review, 51(4), 85–95. https://doi.org/10.1016/j.jdsr.2015.03.004

Pajor, K., & Pajchel, L. (2019). Hydroxyapatite and Fluorapatite in Conservative. Materials, 12(2683), 1–16.

Permatasari, A. P., Yanuar, M., & Nahzi, I. (2016). Kekasaran permukaan resin-modified glass ionomer cement setelah perendaman dalam air sungai (penelitian menggunakan air sungai desa anjir pasar, barito kuala ,kalimantan selatan). Dentino Jurnal Kedokteran Gigi, I(2), 164–168.

Rajkumar, M., Meenakshisundaram, N., & Rajendran, V. (2011). Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation. Materials Characterization, 62(5), 469–479. https://doi.org/10.1016/j.matchar.2011.02.008

Ren, F., Ding, Y., & Leng, Y. (2014). Infrared spectroscopic characterization of carbonated apatite: A combined experimental and computational study. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 102(2), 496–505.

Reyes-Gasga, J., Martínez-Piñeiro, E. L., Rodríguez-Álvarez, G., Tiznado-Orozco, G. E., García-García, R., & Brès, E. F. (2013). XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Materials Science and Engineering C, 33(8), 4568–4574. https://doi.org/10.1016/j.msec.2013.07.014

Safari Gezaz, M., Mohammadi Aref, S., & Khatamian, M. (2019). Investigation of structural properties of hydroxyapatite/ zinc oxide nanocomposites; an alternative candidate for replacement in recovery of bones in load-tolerating areas. Materials Chemistry and Physics, 226(July 2018), 169–176. https://doi.org/10.1016/j.matchemphys.2019.01.005

Shaltout, A. A., Allam, M. A., & Moharram, M. A. (2011). FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 83(1), 56–60. https://doi.org/10.1016/j.saa.2011.07.036

Sianipar, J. S. (2016). Sintesis Hidroksiapatit melalui Precipitated Calcium Carbonate (PCC) Kulit Kerang Darah dengan Metode Hidrotermal. Riau University.

Sulistioso, G. S., Deswita, D., Wulanawati, A., & Romawati, A. (2012). Sintesis Hidroksiapatit Berpori dengan Porogen Kitosan dan Karakterisasinya. Jurnal Kimia Dan Kemasan, 34(1), 219–224.

Sulistiyono, P., Herawati, D. M. D., & Arya, I. F. D. (2017). Rebon Shrimp Powder Addition Influence to Nutritional Values, Organoleptic Properties and Acceptance of Supplementary Food by Children Aged 4-5 Years Old. Kesmas: Jurnal Kesehatan Masyarakat Nasional (National Public Health Journal), 11(4), 168–172.

Syafaat, F. Y., & Yusuf, Y. (2018). Effect of ca:P concentration and calcination temperature on hydroxyapatite (HAp) powders from quail eggshell (coturnix coturnix). International Journal of Nanoelectronics and Materials, 11, 51–58.

Vallet-Regi, M. (2014). Bio-ceramics with clinical applications. John Wiley & Sons.

Vishwakarma, A., Sharpe, P., Shi, S., & Ramalingam, M. (2014). Stem cell biology and tissue engineering in dental sciences. Academic Press.

Xie, C., Lu, H., Li, W., Chen, F.-M., & Zhao, Y.-M. (2012). The use of calcium phosphate-based biomaterials in implant dentistry. Journal of Materials Science: Materials in Medicine, 23(3), 853–862.

Youness, R. A., Taha, M. A., Elhaes, H., & Ibrahim, M. (2017). Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis. Materials Chemistry and Physics, 190, 209–218. https://doi.org/10.1016/j.matchemphys.2017.01.004

Zou, Z., Bertinetti, L., Politi, Y., Fratzl, P., & Habraken, W. J. E. M. (2017). Control of polymorph selection in amorphous calcium carbonate crystallization by poly (aspartic acid): two different mechanisms. Small, 13(21), 1603100.


Full Text: PDF

DOI: 10.15408/jkv.v7i2.21359

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ngatijo Ngatijo, Restina Bemis, Heriyanti Heriyanti, Rahmi Rahmi, Nashih Ulwan, Rahmat Basuki

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.