Molecular Docking on Kokosanolide A and C for Anticancer Activity Against Human Breast Cancer Cell MCF-7

Sri Purwani, Julita Nahar, Zulfikar Zulfikar, Nurlelasari Nurlelasari, Tri Mayanti


Kokosanolide A (1), from the seeds of Lansium domesticum Corr. cv Kokossan, has been shown strong cytotoxic activities (IC50 = 8.62 μg/mL) against MCF-7 breast cancer cells. The aim of this work was to study the molecular interactions of kokosanolide A and kokosanolide C with the Estrogen Receptor α (ERα) using computer-aided drug design approaches. Molecular docking using Autodock Vina (open-source software PyRx 0.8) was employed to explore the modes of binding of kokosanolide A (1) and kokosanolide C (2) with ERα. Compounds 1 and 2 showed strong bond-free energy (-8.8 kcal/mol and -8.7 kcal/mol) to ERα. These two compounds have a molecular mechanism to inhibit ERα in breast cancer cells.


Estrogen receptor alpha; Lansium domesticum; Meliaceae; kokosanolide A.


Belev B, Vrbanec D. 2012. Hormonal resistance in breast- and prostate cancer. Periodicum Biologorum. 114(4): 511–517.

Burns KA, Korach KS. 2012. Estrogen receptors and human disease: An update. Archives of Toxicology. 86(10): 1491–1504.

Dahlman WK, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson J. 2006. International Union of Pharmacology LXIV: Estrogen Receptors. Pharmacological Reviews. 58(4):773-781.

Fadhilah K, Wahyuona S. Astuti P. 2020. A bioactive compound isolated from duku (Lansium domesticum Corr) fruit peels exhibits cytotoxicity against T47D cell line. F1000Research. 9(3).

Gross JM, Yee D. 2002. Commentary How does the estrogen receptor work. Breast Cancer Res. 4:62-64.

Gupta A, Chaudhary N, Kakularam KR. 2015. The augmenting effects of desolvation and conformational energy terms on the predictions of docking programs against mPGES-1. PLoS One. 10(8): 1-16. doi:10.1371/journal.pone.0134472.

Leatemia JA, Isman MB. 2004. Insecticidal activity of crude seed extracts of Annona. spp., Lansium domesticum and Sandoricum koetjape against lepidopteran larvae. Phytopatasitica. 32: 30–37.

Lim TK. 2012. Edible Medicinal And Non Medicinal Plants: Volume 3, Fruits. London: Springer.

Matsumoto T, Kitagawa T, Teo S, Anai Y, Ikeda R, Imahori D, Ahmad HS, Watanabe T. 2018. Structures and antimutagenic effects of onoceranoid-type triterpenoids from the leaves of Lansium domesticum. J. Nat. Prod. 81: 2187–2194.

Matsumoto T, Kitagawa T, Ohta T, Yoshida T, Imahori D, Teo S, Ahmad HS, Watanabe T. 2019. Structures of triterpenoids from the leaves of Lansium domesticum. J. Nat. Med. 73: 727–734.

Mayanti T, Tjokronegoro R, Supratman U, Mukhtar MR, Awang K, Hadi AHA. 2011. Antifeedant triterpenoids from the seeds and bark of Lansium domesticum cv Kokossan (Meliaceae). Molecules. 16: 2785–2795.

Nishizawa M, Nademoto Y, Sastrapradja S, Shiro M, Hayashi Y. 1985. Structure of dukonolides, bitter principles of Lansium domesticum. J. Org. Chem. 50: 5487-5490.

Nishizawa M, Nademoto Y, Sastrapradja S, Shiro M, Hayashi Y. 1988. New tetranortriterpenoid from the seeds of Lansium domesticum. Phytochemistry. 27: 237-239.

Novianti FA, Purnami SW. 2012. Analisis diagnosis pasien kanker payudara menggunakan regresi logistik dan support vector machine (svm) berdasarkan hasil mamografi fourina. Jurnal Sains dan Seni ITS, 1(1).

Qi JP, Yang YL, Zhu H, Wang J, Jia Y, Liu N, Tang P. 2011. Expression of the androgen receptor and its correlation with molecular subtypes in 980 Chinese breast cancer patients. Breast Cancer: Basic and Clinical Research. 5(1): 1–9.

Ragasa CY, Labrador P, Rideout JA. 2006. Antimicrobial terpenoid from Lansium domesticum. Philipp. Agric. Sci. 89: 101–105.

Saewan N, Sutherland JD, Chantrapromma K. 2006. Antimalarial tetranorterpenoids from the seeds of Lansium domesticum Corr. Phytochemistry. 67: 2288-2293.

Samavat H, Kurzer MS. 2015. Estrogen metabolism and breast cancer. Cancer Letters. 356(2): 231–243.

Sudha A, Srinivasan P, Kanimozhi V, Palanivel K & Kadalmani B. 2018. Antiproliferative and apoptosis-induction studies of 5-hydroxy 3',4',7-trimethoxyflavone in human breast cancer cells MCF-7: an in vitro and in silico approach. Journal of Receptors and Signal Transduction. DOI:10.1080/10799893.2018. 1468780.

Tabassum S, Zaki M, Afzal M, Arjmand F. 2014. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Ia: In vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines. European Journal of Medicinal Chemistry. 74(2014): 509-523.

Zahra SN, Khattak NA, Mir A. 2013. Comparative modeling and docking studies of p16ink4/Cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1. Theoretical Biology and Medical Modelling. 10(1):1-9.

Full Text: PDF

DOI: 10.15408/jkv.v7i1.20534


  • There are currently no refbacks.

Copyright (c) 2021 Tri Mayanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.