Improvement of PVA-Glucomanan-Acrylamide Hydrogel as Base Material of Immobilization

Repita Sari, Sri Mulijani, Meri Suhartini


Hydrogel products are currently widely used in various fields, one of which is agriculture. Most hydrogels are made of synthetic polymers because they have good absorption but are not biodegradable. Glucomannan is a natural polymer that is able to absorb large amounts of water and biodegradable but it is difficult to maintain water content. One method to improve the mechanical properties of hydrogels is by modifying the hydrogels through the formation of an interpenetrating network (IPN) between natural polymers and synthetic polymers. In this study, the IPN hydrogel based on polyvinyl alcohol and glucomannan and acrylamide as a crosslinker was made by combining freeze-thaw and gamma irradiation techniques. The results showed that the hydrogel water absorption after immersion for 24 hours was 311.09% where the weight of glucomannan was 1 g and acrylamide was 0.75 g and the irradiation dose was 30 kGy. The result of cumulative release test of paraquat immobilized into the hydrogel was 12.00% within 10 days. This indicates that the PVA-glucomannan-acrylamide hydrogel can be used as a controlled paraquat release matrix so as to minimize the effect on the overuse of pesticides.


Controlled release; Gamma irradiation; Glucomannan; IPN hydrogel


Abd El-Rehim, H. A., Hegazy, E. S. A., & Abd El-Mohdy, H. L. (2005). Properties of polyacrylamide-based hydrogels prepared by electron beam irradiation for possible use as bioactive controlled delivery matrices. Journal of Applied Polymer Science, 98(3), 1262–1270.

Alonso-Sande, M., Teijeiro-Osorio, D., Remuñán-López, C., & Alonso, M. J. (2009). Glucomannan, a promising polysaccharide for biopharmaceutical purposes. European Journal of Pharmaceutics and Biopharmaceutics, 72(2), 453–462.

Aouada, F. A., De Moura, M. R., Orts, W. J., & Mattoso, L. H. C. (2010). Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. Journal of Materials Science, 45(18), 4977–4985.

Cipriano, B. H., Banik, S. J., Sharma, R., Rumore, D., Hwang, W., Briber, R. M., & Raghavan, S. R. (2014). Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules, 47(13), 4445–4452.

Demitri, C., Scalera, F., Madaghiele, M., Sannino, A., & Maffezzoli, A. (2013). Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. International Journal of Polymer Science, 2013.

Erizal, E., & Abidin, Z. (2011). Sintesis hidrogel campuran poli (vinil alkohol) (PVA)- natrium alginat dengan kombinasi beku-leleh dan radiasi gamma untuk bahan pembalut luka synthesis of hydrogel poly (vinyl alcohol) (PVA)-Sodium alginate blend by freeze-thawing followed by Ga. Jurnal Ilmiah Aplikasi Isotop Dan Radiasi, 7, 21–28.

Erizal, Erizal. (2019). Synthesis and characterization of crosslinked polyacrylamide (Paam)-Carrageenan hydrogels superbasorbent prepared by gamma radiation. Indonesian Journal of Chemistry, 10(1), 12–19.

Erizal, Erizal, Abbas, B., Sukaryo, S. G., & Barleany, D. R. (2015). Synthesis and characterization superabsorbent hydrogels of partially neutralized acrylic acid prepared using gamma irradiation; swelling and thermal behavior. Indonesian Journal of Chemistry, 15(3), 281–287.

Erizal, Erizal, Pratiwi, E. W., Perkasa, D. P., Noviyantih, N., Abbas, B., & Sudirman, S. (2018). Imobilisasi propanolol HCl pada hidrogel poli (vinil alkohol) - natrium alginat dengan teknik radiasi. Jurnal Kimia Dan Kemasan, 40(1), 47.

Francis, S., Mitra, D., Dhanawade, B. R., Varshney, L., & Sabharwal, S. (2009). Gamma radiation synthesis of rapid swelling superporous polyacrylamide hydrogels. Radiation Physics and Chemistry, 78(11), 951–953.

Jayaramudu, T., Ko, H. U., Kim, H. C., Kim, J. W., Li, Y., & Kim, J. (2017). Transparent and semi-interpenetrating network P(vinyl alcohol)- P(Acrylic acid) hydrogels: pH responsive and electroactive application. International Journal of Smart and Nano Materials, 8(2–3), 80–94.

Kamoun, E. A., Chen, X., Mohy Eldin, M. S., & Kenawy, E. R. S. (2015). Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arabian Journal of Chemistry, 8(1), 1–14.

Karadaǧ, E., Saraydin, D., & Güven, O. (2001). Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers. Macromolecular Materials and Engineering, 286(1), 34–42.<34::AID-MAME34>3.0.CO;2-J

Li, Z., Su, Y., Xie, B., Liu, X., Gao, X., & Wang, D. (2015). Novel biocompatible double network hydrogels consisting of konjac consisting of konjac glucomannan with high. Journal of Materials Chemistry B: Materials for Biology and Medicine, 3(January), 1769–1778.

Lin, S., & Gu, L. (2015). Influence of crosslink density and stiffness on mechanical properties of type I collagen gel. Materials, 8(2), 551–560.

Rahman, M. S., Islam, M. M., Islam, M. S., Zaman, A., Ahmed, T., Biswas, S., Sharmeen, S., Rashid, T. U., & Rahman, M. M. (2019). Morphological Characterization of Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham.

Rashidzadeh, A., Olad, A., Hejazi, m. J. (2015). Controlled release systems based on intercalated paraquat onto montmorillonite and clinoptilolite clays encapsulated with sodium alginate. Advances in Polymer Technology. 36(2), 1–9.

Sudrajat, D. S. P. A. (2009). Cara Induksi Radiasi Gamma Untuk Aplikasi Pembalut Luka Pendahuluan Hidrogel adalah salah satu jenis makromolekul polimer hidrofilik yang berbentuk jaringan berikatan silang, mempunyai kemampuan mengembang dalam air (swelling), dan memiliki daya diffus. 177–193.

Sun, Y., Ma, Y., Fang, G., Ren, S., & Fu, Y. (2016). Controlled Pesticide release from porous composite hydrogels based on lignin and polyacrylic acid. BioResources, 11(1), 2361–2371.

Wu, W., Liu, J., Cao, S., Tan, H., Li, J., Xu, F., & Zhang, X. (2011). Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2-(dimethylamino) ethyl methacrylate]. International Journal of Pharmaceutics, 416(1), 104–109.

Zhang, C., Chen, J. Da, & Yang, F. Q. (2014). Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydrate Polymers, 104(1), 175–181.

Full Text: PDF

DOI: 10.15408/jkv.v8i1.20332


  • There are currently no refbacks.

Copyright (c) 2022 Repita Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.