Antibacterial Activity of Sugarcane Bagasse Nanocellulose Biocomposite with Chitosan Against Escherichia coli

A'yunil Hisbiyah, Lilik Nurfadlilah, Rohmawati Hidayah

Abstract


Antibacterials have been used to treat infectious diseases in both humans and animals since 1929. Along with their use, there is resistance to some antibacterials. 43% of Escherichia coli is resistant to various types of antibiotics. Therefore, research on the development of antibacterial ingredients is always being developed. Nanocellulose has received a lot of attention on its application of antibacterial material support. Meanwhile, chitosan is an antibacterial biopolymer with a brittle structure, hence nanocellulose is added to chitosan film to increase its structural stability. In this study, nanocellulose was extracted from sugarcane bagasse through a combination method of sulfuric acid hydrolysis with ultrasonic waves. The effect of addition of nanocellulose to chitosan mechanical properties was investigated. Scanning Electron Microscopy (SEM) characterization showed that there were differences in morphology between nanocellulose, chitosan, and nanocellulose-chitosan biocomposites. The result of X-Ray Diffraction and Fourier-transformed infrared spectroscopy analysis showed that biocomposites was successfully formed. The average size of nanocellulose particle was 132.67 nm. Nanocellulose-chitosan biocomposites with a ratio of 10:2 have the best antibacterial activity against Escherichia coli than other biocomposite ratios.

Keywords


Antibacterial activity; nanocellulose-chitosan; Escherichia coli; sugarcane bagasse; ultrasonication.

References


Abdul Khalil HPS, Saurabh CK, Adnan AS, Nurul Fazita MR, Syakir MI, Davoudpour Y, Rafatullah M, Abdullah CK, Haafiz MKM, Dungani R. 2016. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydrate Polymers. 150: 216–226. https://doi.org/10.1016/j.carbpol.2016.05.028

Amanda ER, Khoirun N, Yulianto AP. 2020. Pengembangan bioplastik antibakteri Morgonella morganii sebagai kemasan makanan. Jurnal Kimia Dan Kemasan. 42(1): 29–36.

Calcott PH. 1982. Cyclic AMP and cyclic GMP control of synthesis of constitutive enzymes in Escherichia coli. Journal of General Microbiology. 128(4): 705–712. https://doi.org/10.1099/00221287-128-4-705

Cheung RCF, Ng TB, Wong JH, Chan WY. 2015. Chitosan: An update on potential biomedical and pharmaceutical applications. In Marine Drugs. 13(8): https://doi.org/10.3390/md13085156

Chowdhury ZZ, Hamid SBA. 2016. Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a. BioResources. 11(2): 3397–3415.

Effendi DB, Rosyid NHR, Nandiyanto ABD, Mudzakir A. 2015. Review : sintesis nanoselulosa. Jurnal Integrasi Proses. 5(2): 61–74. https://doi.org/10.1371/journal.pone.0057607

George J, Sabapathi SN. 2015. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnology, Science and Applications. 8: 45–54. https://doi.org/10.2147/NSA.S64386

Gunathilake TMSU, Ching YC, Chuah CH. 2017. Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers. 9(2): 64. https://doi.org/10.3390/polym9020064

Hadi U, Kuntaman K, Qiptiyah M, Paraton H. 2013. Problem of antibiotic use and antimicrobial resistance in Indonesia: are we really making progress. Indonesian Journal of Tropical and Infectious Disease. 4(4): 5. https://doi.org/10.20473/ijtid.v4i4.222

Hänninen A, Sarlin E, Lyyra I, Salpavaara T, Kellomäki M, Tuukkanen S. 2018. Nanocellulose and chitosan based films as low cost, green piezoelectric materials. Carbohydrate Polymers. 202(September): 418–424. https://doi.org/10.1016/j.carbpol.2018.09.001

Kim SH, Schneider BL, Reitzer L. 2010. Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli. Journal of Bacteriology. 192(20): 5304–5311. https://doi.org/10.1128/JB.00738-10

Kirani PD, Semadi AN, Wayan GI. 2014. Inhibition activity of essential oil of lemongrass leaves (Cymbopogon citratus) on the growth of Escherichia coli, Staphylococcus aureus, and Vibrio cholerae. Jurnal Rekayasa Dan Manajemen Agroindustri. 2(1): 29–38.

Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J. 2012. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate Polymers. 90(4): 1609–1613. https://doi.org/10.1016/j.carbpol.2012.07.038

Li, Juanjuan, Cha, R., Mou, K., Zhao, X., Long, K., Luo, H., Zhou, F., & Jiang, X. (2018). Nanocellulose-Based Antibacterial Materials. Advanced Healthcare Materials, 7(20), 1–16. https://doi.org/10.1002/adhm.201800334

Mandal A, Chakrabarty D. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB ) and its characterization. Carbohydrate Polymers. 86(3): 1291–1299. https://doi.org/10.1016/j.carbpol.2011.06.030

Nieß A, Siemann-Herzberg M, Takors R. 2019. Protein production in Escherichia coli is guided by the trade-off between intracellular substrate availability and energy cost 06 biological sciences 0601 biochemistry and cell biology. Microbial Cell Factories. 18(1): 1–10. https://doi.org/10.1186/s12934-019-1057-5

Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S. 2016. Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing. 83: 2–18. https://doi.org/10.1016/j.compositesa.2015.10.041

Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G. 2018. Nanocellulose: extraction and application. Carbon Resources Conversion. 1(1): 32–43. https://doi.org/10.1016/j.crcon.2018.05.004

Rahmi AYUF. 2017. Adsorpsi protein oleh nanoselulosa berbasis ampas tebu ( bagasse ) dengan metode hidrolisis asam. Jember(ID): Jursan Kimia Fakultas Matematika dan Ilmu pengetahuan Alam Universitas Jember.

Ribeiro RSA, Pohlmann BC, Calado V, Bojorge N, Pereira N. 2019. Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Engineering in Life Sciences. 19(4): 279–291. https://doi.org/10.1002/elsc.201800158

Rosli NA, Ahmad I, Abdullah I. 2013. Isolation and characterization of cellulose nanocrystals from agave angustifolia fibre. BioResources. 8(2): 1893–1908. https://doi.org/10.15376/biores.8.2.1893-1908

Saputri LH, Sukmawan R, Santoso H, Rochardjo B. 2018. Isolasi Nano Selulosa dari Ampas Tebu dengan Proses Blending pada Berbagai Variasi Konsentrasi. April, 1–6.

Shahi N, Min B, Sapkota B, Rangari VK. 2020. Eco-friendly cellulose nanofiber extraction from sugarcane bagasse and film fabrication. Sustainability (Switzerland). 12(15): 1–15. https://doi.org/10.3390/su12156015

Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers. 88(2): 772–779. https://doi.org/10.1016/j.carbpol.2012.01.062

Subramanian K, Senthil KP, Jeyapal P, Venkatesh N. 2005. Characterization of ligno-cellulosic seed fibre from Wrightia Tinctoria plant for textile applications-an exploratory investigation. European Polymer Journal. 41(4): 853–861. https://doi.org/10.1016/j.eurpolymj.2004.10.037

Szymańska-Chargot M, Chylińska M, Pertile G, Pieczywek PM, Cieślak KJ, Zdunek A, Frąc M. 2019. Influence of chitosan addition on the mechanical and antibacterial properties of carrot cellulose nanofibre film. Cellulose. 26(18): 9613–9629. https://doi.org/10.1007/s10570-019-02755-9

Wulandari WT, Rochliadi A, Arcana IM. 2016. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering. 107(1). https://doi.org/10.1088/1757-899X/107/1/012045

Xu Q, Ji Y, Sun Q, Fu Y, Xu Y, Jin L. 2019. Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release. Nanomaterials. 9(2).https://doi.org/10.3390/nano9020253


Full Text: PDF

DOI: 10.15408/jkv.v7i1.18718

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 A'yunil Hisbiyah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.