Synthesis of Graphene Oxide/Polypyrrole (GO/PPy) from Used Batteries as Electrodes in Supercapacitor Cells

Muhammad Iqbal Qeis, Ferdian Rizki Amanda, Desi Listiani, Anthoni B Aritonang, Intan Syahbanu

Abstract


Fabrication with graphite-modified GO/PPy composites have been studied from used batteries using the Hummers method. This research was performance in four steps: graphite powder preparation, GO synthesis, GO/PPy composite synthesis, and supercapacitor cell manufacturing. The results of the study were characterized using X-Ray Diffraction (XRD) to see the character of the diffraction patterns formed by carbon batteries used before and after calcination and Fourier Transform Infra-Red (FTIR) to identify compound functional groups and conduct initial tests in the form of voltage, capacitance and life cycle by measuring charge and discharge times. The graphite preparation stage is carried out by the calcination method at 900°C to produce graphite with an angle of 2θ which is 26° with reflection from (d002). FTIR data showed that GO/PPy composites showed a successful combination of characteristics similar to pure polypyrrole and GO which included a broad absorption band located at 3500-2300 cm-1 which was estimated to be stretching the amine from polypyrrole and O-H group in the GO layer and the emergence of peaks new in the absorption band with a wave number 909 cm-1 is the CN vibration of the polymerized pyrrole. Meanwhile, based on the LCR meter measurement results in the best supercapacitor cells in the sampel GO/PPy ratio (3:10) with voltage value of 74.1 mV; a capacitance value of 15.14 µF and the best charge and discharge times.


Keywords


Used battery; GO/PPy composite; supercapacitor cells

References


Cheng S. 2015. Effect of Aluminum Foil Etching Process on Graphene Super Capacitor. Chemical Engineering Transactions. 46 : 655-660.

Conway BE. 1999. Electrochemical Supercapacitor-Scientific Fundamentals and Technological Applications. New York: Kluwer Academic/Plenum Publishers.

Down MP, Neale SJR, Smith GC, Banks CE. 2018. Fabrication of Graphene oxide supercapacitor devices. ACS Appl. Energy Mater. 1(2): 707-714.

Dreyer DR, Park S, Bielawski CW, Ruoff RS. 2010. The chemistry of graphene oxide. Chem. Soc. Rev. 39(1): 228-240.

Fan LQ, Liu GJ, Wu JH, Liu L, Lin JM, Wei YL. 2014. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochimica Acta. 137: 26-33.

Fialkov AS. 1979. Uglegrafitovye Materialy (Carbon-Graphite Materials). Moscow: Energiya.

Hanifah MFR, Jaafar J, Aziz M, Ismail AF, Rahman MA, Othman MHD. 2015. Synthesis of graphene oxide nanosheets via modified Hummers’ method and its physicochemical properties. Jurnal Teknologi. 74(1): 189-192.

Hummers WS, Offeman RE. 1958. Preparation of graphitic oxide. American Chemical Society. 80(6): 1339.

Ilhami M, Susanti D. 2014. Pengaruh massa Zn dan temperatur hydrotermal terhadap struktur dan sifat elektrik material graphene. Jurnal Teknik Pomits. 3(2) : 185-190.

Junaidi M, Susanti D. 2014. Pengaruh variasi waktu ultrasonikasi dan waktu tahan hydrothermal terhadap struktur dan konduktivitas listrik material graphene. Jurnal Teknik Pomits. 3(1): 13-18.

Kumar P, Divya N, Ratan JK. 2019. Synthesis and characterization of chemically derived graphene oxide from graphite. In: Agnihotri A, Reddy K, Bansal A. (eds) Sustainable Engineering. Lecture Notes in Civil Engineering, 30: 85-94.

Li J, and Xie H. 2012. Synthesis of graphene oxide/polypyrrole nanowire composite for supercapacitors. Material Letters. 78: 106-109.

Liu C, Li F, Ma LP, Cheng HM. 2010. Advanced materials for energy storage. Adv. Mater. 22: E28-E62.

Liu Y, Wang H, Zhou J, Bian L, Zhu E, Hai J. 2013. Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochimica Acta. 112: 44-52.

Murniati A, Buchari, Gandasasmita S, Nurachman. 2012. Sintesis dan karakterisasi polipirol pada elektroda kerja kasa baja dengan metode voltametri siklik. Indonesian Journal of Materials Science. 13(3): 210-215.

Nurzam FRP, Ramli and Ratnawulan. 2019. Pengaruh komposisi CoFe2O4 terhadap sifat listrik nanokomposit CoFe2O4/PANi yang disintesis dengan metoda sol-gel. Pillar of Physics. 12(1): 38-45.

Popova AN. 2017. Crystallographic analysis of graphite by X-Ray diffraction. Coke and Chemistry. 60(9): 32-36.

Salas IMDF, Sudhakar YN, and Selvakumar M. 2014. High performance of symmetrical supercapacitor based on multilayer films of graphene oxide/polypyrrole electrodes. Applied Surface Science. 296: 195-203.

Saraswati TE, Bahrudin A, and Anwar M. 2016. Pengaruh suhu pemanasan dan agen pengikat dalam pembuatan konduktor listrik berbasis arang. ALCHEMY Jurnal Penelitian Kimia. 12(2): 167-178.

Socrates G. 2001. Infrared and Raman Characteristic Group Frequencies. New York: Wiley and Sons.

Stoller MD, Park S, Zhu Y, An J, Rouff RS. 2008. Graphene-Based Ultracapacitors. Nano Letters. 8(10): 3498-3502.

Syakir N, Nurlina R, Anam S, Aprilia A, Hidayat S, Fitrilawati. 2015. Kajian pembuatan oksida grafit untuk produksi oksida grafena dalam jumlah besar. Jurnal Fisika Indonesia. 55(19): 26-29.

Wachid FM, Darminto. 2012. Analisis fasa karbon pada proses pemanasan temputung kelapa. Jurnal Teknik Pomits. 1(1): 1-4.

Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. 2008. Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C. 112: 8192-8195.

Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang WH. 2012. Bacterial cellulose nanofibers supported polyaniline nanocomposite with flake-shape morphology as supercapacitor electrodes. J. Phy. Chem. 116: 13013-13019.

Wang J. 2000. Analytical Electrochemistry. New York: Wiley and Sons.

Winter W, Brodd RJ. 2004. What are batteries, fuel cells, and supercapacitors. Chem. Rev. 104: 4245-4270.

Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. 2011. Carbon materials for chemical capasitive energy storage. Adv. Mat. 23(42): 4828-4850.


Full Text: PDF

DOI: 10.15408/jkv.v5i2.11714

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Muhammad Iqbal Qeis

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.