IDENTIFIKASI SERAT BAMBU MENGGUNAKAN EKSTRAKSI CIRI STATISTIK ORDE 2 (GLCM) DAN PENGUKURAN JARAK K-NN
Abstract
Indonesia is a large bamboo producer. Many benefits can be taken from bamboo trees, among others, as an alternative material for environmentally friendly construction, handicraft, and even become a safe material for use. Based on the property of its mechanical strength, bamboo has high tensile strength and fiber content, including fiber length, inter-fiber adhesive, namely lignin and the higher diameter of bamboo fiber, causing bamboo stems to become stronger and stiffer so that bamboo quality is getting better. One objective is to use a texture analysis of statistical features extraction of digital image processing. Feature extraction is a process to get the characteristics of visual perception. Texture information can be used to distinguish the surface properties of objects in images that are related to coarse and fine. This research uses a second-order statistical calculation of Gray Level Co-occurrence Matrices (GLCM) by measuring contrast, energy, homogeneity, and correlation levels to determine roughness from bamboo image textures that have irregular patterns. The second method is to use similarity measurements with the K-NN method in which in this study K = 3 with testing images of 28 images obtained an accuracy of 0.8, precission of 0, 8 and f-measurement of 0.9.
Keywords
Full Text:
PDFReferences
Masdar A, Zufrimar, Noviati, Desi Putri, 2013, Penggunaan Ranting Bambu Ori Sebagai Konektor Pada Struktur Truss Bambu, Konferensi Nasional Teknik Sipil, Solo, Universitas Sebelas Maret.
R. A. Pramunendar, C. Supriyanto, Dwi Hermawan Novianto, Ignatius Ngesti Yuwono, G. F. Shidik, and P. N. Andono. 2013. “A classification method of coconut wood quality based on Gray Level Co-occurrence matrices,” in 2013 International Conference on Robotics, Biomimetics, Intelligent Computational Systems, 2013, vol. 1, pp. 254–257.
I.N. Yuwono, R. A. Pramunendar, P. N. Andono, and R. A. Subandi, “the Quality Determination of Coconut Wood Density Using Learning Vector Quantization,” J. Theor. Appl. Inf. Technol., vol. 57, no. 1, pp. 82–88, 2013.
M. Tuceryan, A.K. Jain, Texture analysis, in: C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.), Handbook of Pattern Recognition and Computer Vision, World Scientific, 1993, pp. 235–276.
L. A. Ruiz; A. Fdez-Sarría; J.A. Recio, 2012, Texture Feature Extraction For Classification Of Remote Sensing Data Using Wavelet Decomposition, Dept. of Cartographic Engineering, Geodesy and Photogrammetry. Politechnic University of Valencia.Camino de Vera s/n 46022-Valencia (Spain) – (laruiz, afernan, jrecio@cgf.upv.es)
L. A. Ruiz; A. Fdez-Sarría; J.A. Recio, 2012, Texture Feature Extraction For Classification Of Remote Sensing Data Using Wavelet Decomposition, Dept. of Cartographic Engineering, Geodesy and Photogrammetry. Politechnic University of Valencia.Camino de Vera s/n 46022-Valencia (Spain) – (laruiz, afernan, jrecio@cgf.upv.es)
Yuda Permadi, Murinto, 2015, Aplikasi Pengolahan Citra Untuk Identifikasi Kematangan Mentimun Berdasarkan Tekstur Kulit Menggunakan Metode Ekstraksi Ciri Statistik, Jurnal Informatika Vol. 9, No. I, Jan 2015.
Arief, Siska Riantini. 2011. Analisis Tekstur dan Ekstraksi Ciri, Program Studi Teknik Informatika, Institut Teknologi Telkom Bandung.
Elvia Budianita, Jasril, Lestari Handayani. 2015. Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi, Jurnal Sains, Teknologi dan Industri, Vol. 12, No. 2, Juni 2015, pp.242 - 247
Kadir Abdul dan Adhi Susanto. 2013. Teori dan Aplikasi Pengolahan Citra. Yogyakarta: ANDI.
Latifah, Supriyadi, Rochim (2018), Characteristics of Bamboo Fiber as Environmentally Friendly Material for Soil Strengthening, 1st International Conference on Education and Social Science Research, Universitas PGRI Semarang, 2013, Atlantis Press, Advances in Social Science, Education and Humanities Research, volume 287, pp. 18-21.
DOI: https://doi.org/10.15408/jti.v12i2.8946 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Khoiriya Latifah, Abdul Rochim, Bambang Supriyadi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.
JTI Visitor Counter: View JTI Stats