Impact of Hyperparameter Tuning on CNN-Based Algorithm for MRI Brain Tumor Classification
Abstract
This study examines the impact of hyperparameter tuning on the performance of Convolutional Neural Networks (CNN) in classifying brain tumors using MRI images. The dataset, sourced from Kaggle, underwent preprocessing techniques such as normalization, augmentation, and resizing to enhance consistency and diversity. The study evaluates five hyperparameter configurations, analyzing their effects on classification accuracy, precision, recall, and F1-score. The optimal configuration (batch size: 16, epochs: 10, learning rate: 0.001) achieved an accuracy of 86%, precision of 81%, recall of 85%, and an F1-score of 0.83. Other configurations showed trade-offs, where larger batch sizes increased recall but reduced precision. These findings emphasize the importance of careful hyperparameter tuning to optimize medical imaging classification performance.
Keywords
Full Text:
PDFReferences
M. R. S. Alfarizi, M. Z. Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning,” Karya Ilm. Mhs. Bertauhid (KARIMAH TAUHID), vol. 2, no. 1, pp. 1–6, 2023.
L. Liao, H. Li, W. Shang, and L. Ma, “An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural Networks,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 3, pp. 1–40, Jul. 2022, doi: 10.1145/3506695.
N. A. Mahoto, R. Iftikhar, A. Shaikh, Y. Asiri, A. Alghamdi, and K. Rajab, “An intelligent business model for product price prediction using machine learning approach,” Intell. Autom. Soft Comput., vol. 30, no. 1, pp. 147–159, 2021, doi: 10.32604/iasc.2021.018944.
H. J. Jie and P. Wanda, “RunPool: A Dynamic Pooling Layer for Convolution Neural Network,” Int. J. Comput. Intell. Syst., vol. 13, no. 1, p. 66, 2020, doi: 10.2991/ijcis.d.200120.002.
Z. Li, Q. Wu, B. Cheng, L. Cao, and H. Yang, “Remote Sensing Image Scene Classification Based on Object Relationship Reasoning CNN,” IEEE Geosci. Remote Sens. Lett., vol. 19, no. August 2020, pp. 1–5, 2022, doi: 10.1109/LGRS.2020.3017542.
M. A. Hanin, R. Patmasari, and R. Y. Nur, “Sistem Klasifikasi Penyakit Kulit Menggunakan Convolutional Neural Network ( Cnn ) Skin Disease Classification System Using Convolutional Neural Network ( Cnn ),” e-Proceeding Eng., vol. 8, no. 1, pp. 273–281, 2021.
R. Magdalena, S. Saidah, N. K. C. Pratiwi, and A. T. Putra, “Klasifikasi Tutupan Lahan Melalui Citra Satelit SPOT-6 dengan Metode Convolutional Neural Network (CNN),” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. 335, Dec. 2021, doi: 10.26418/jp.v7i3.48195.
D. Nabila, “DETEKSI OBJEK BAYANGAN KENDARAAN MENGGUNAKAN FASTER R-CNN,” in Prosiding Seminar Nasional Fisika, 2024, pp. 25–30. doi: 10.21009/03.1201.FA04.
Y. T. Chen et al., “Deep Learning–Based Brain Computed Tomography Image Classification with Hyperparameter Optimization through Transfer Learning for Stroke,” Diagnostics, vol. 12, no. 4, 2022, doi: 10.3390/diagnostics12040807.
B. Shah and H. Bhavsar, “Time Complexity in Deep Learning Models,” Procedia Comput. Sci., vol. 215, no. 2022, pp. 202–210, 2022, doi: 10.1016/j.procs.2022.12.023.
I. M. A. M. Dinata, Gunadi. I Gede Aris, and I. M. G. Sunarya, “Analisis Hyperparameter Pada Klasifikasi Jenis Daging Menggunakan Algoritma Convolutional Neural Network,” J. Sains Komput. Inform., vol. 8, no. 1, pp. 25–34, 2024.
J. Tandean, R. Indrawan, I. Intan, and S. Ramadhani Arifin, “Pengaruh Penerapan Stochastic Gradient Descent Dan Adam Optimizer Pada Hyperparameter Tuning Untuk Klasifikasi Penyakit Tanaman Ubi Kayu,” J. Dipanegara Komput. Tek. Inform., vol. XVI, no. 1, pp. 80–90, 2023, [Online]. Available: https://www.ejurnal.dipanegara.ac.id/index.php/dipakomti/article/view/1377
M. D. Y. Fordana and N. Rochmawati, “Optimisasi Hyperparameter CNN Menggunakan Random Search Untuk Deteksi COVID-19 Dari Citra X-Ray Dada,” J. Informatics Comput. Sci., vol. 4, no. 01, pp. 10–18, 2022, doi: 10.26740/jinacs.v4n01.p10-18.
R. R. Putra, I. G. T. Isa, A. B. J. Malyan, E. Laila, and A. T. Wardhana, “Level Optimum Hyperparameter Tuning Epoch dalam Klasifikasi Citra Bencana Kebakaran,” JTERA (Jurnal Teknol. Rekayasa), vol. 7, no. 2, p. 209, 2022, doi: 10.31544/jtera.v7.i2.2022.209-216.
Afis Julianto, Andi Sunyoto, and Ferry Wahyu Wibowo, “Optimasi Hyperparameter Convolutional Neural Network Untuk Klasifikasi Penyakit Tanaman Padi,” Tek. Teknol. Inf. dan Multimed., vol. 3, no. 2, pp. 98–105, 2022, doi: 10.46764/teknimedia.v3i2.77.
A. Jalil, A. Homaidi, and Z. Fatah, “Implementasi Algoritma Support Vector Machine Untuk Klasifikasi Status Stunting Pada Balita,” G-Tech J. Teknol. Terap., vol. 8, no. 3, pp. 2070–2079, 2024, doi: 10.33379/gtech.v8i3.4811.
N. H. Setyawan and N. Wakhidah, “Analisis perbandingan metode logistic regression, random forest, gradient boosting untuk prediksi diabetes,” vol. 10, no. 1, pp. 150–162, 2025.
I. M. Hamdani1 et al., “INTISARI Jurnal Inovasi Pengabdian Masyarakat Edukasi dan Pelatihan Data Science dan Data Preprocessing,” Juni, vol. 2, no. 1, pp. 19–26, 2024, doi: 10.58227/intisari.v2i1.125.
A. A. Syam, G. H. M, A. Salim, D. F. Surianto, and M. F. B, “Analisis teknik preprocessing pada sentimen masyarakat terkait konflik israel-palestina menggunakan support vector machine,” vol. 9, no. 3, pp. 1464–1472, 2024.
E. Setia Budi, A. Nofriyaldi Chan, P. Priscillia Alda, and M. Arif Fauzi Idris, “RESOLUSI : Rekayasa Teknik Informatika dan Informasi Optimasi Model Machine Learning untuk Klasifikasi dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network,” Media Online, vol. 4, no. 5, p. 509, 2024, [Online]. Available: https://djournals.com/resolusi
P. Putu, P. Pratistha, R. R. Huizen, and D. Hermawan, “Pengaruh Hyperparameter Tuning pada DeepSpeech2,” pp. 824–828, 2024, [Online]. Available: https://www.openslr.org/12/
B. Hartanto, B. W. Yudanto, D. Nugroho, and S. Informasi, “Optimasi Deteksi Tepi Pada Citra Digital Melalui Tuning Hyperparameter Clahe Dan Filter Bilateral :,” J. Ilm. Inform. dan Komput., vol. 3, no. 2, pp. 134–141, 2024.
N. A. Sinaga, Ramadani, R. Rosnelly, and Wanayumini, “Analysis of EfficientNetV2 Model Usage in Predicting Gender on the Face of Mask Users,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2487–2494, Sep. 2022, doi: 10.35957/jatisi.v9i3.2975.
S. A. Pratiwi, A. Fauzi, S. Arum, P. Lestari, and Y. Cahyana, “KLIK: Kajian Ilmiah Informatika dan Komputer Prediksi Persediaan Obat Pada Apotek Menggunakan Algoritma Decision Tree,” Media Online, vol. 4, no. 4, pp. 2381–2388, 2024, doi: 10.30865/klik.v4i4.1681.
Wartumi, R. Kurniawan, and A. Y. Wijaya, “Analisis Data Sentimen Ulasan Pengguna Aplikasi Shopee di Google Play Store dengan Klasifikasi Algoritma Naïve Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 164–170, 2024.
Y. Firmansyah, R. Kurniawan, and Y. A. Wijaya, “Analisis Data Sentimen Pemain Game Role-Playing Game (RPG) Honkai Star Rail dengan Algoritma Naive Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 127–135, 2024.
DOI: https://doi.org/10.15408/jti.v18i1.44147
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muhammad Nasri Gea, Wanayumini, Rika Rosnelly

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.
JTI Visitor Counter: View JTI Stats