Ensemble Learning Development Based on Transfer Learning for Indonesian Traditional Food Detection
Abstract
Development of traditional food competes with other traditional foods now. They must compete with fast food and food from abroad. In 2013, the food and beverage sector were the second highest contributor to tourist expenditure after accommodation. This shows its very important role in the economy. That caused, we need a model that can predict traditional Indonesian foods and snacks. We used ensemble learning. It had 2 transfer learning methods, namely VGG-19 and Xception. They will be combined to improve the performance of the existing model. The research result shown output. It has found that the ensemble learning model achieved accuracy of up to 97% on training data and 91% on testing data. It is hoped that this prediction model can help people recognize typical Indonesian food and increase interest in and preserve the food around them.
Full Text:
PDFReferences
A. R. Krisnadi, “Gastronomi Makanan Betawi Sebagai Salah Satu Identitas Budaya Daerah,” Natl. Conf. Creat. Ind., no. September, pp. 5–6, 2018, doi: 10.30813/ncci.v0i0.1221.
E. Harmayani, U. Santoso, and M. Gardjito, Makanan Tradisional Indonesia Seri 1: Kelompok Makanan Fermentasi dan Makanan yang Populer di Masyarakat. Yogyakarta: UGM Press, 2017.
N. Muthmainah, “Mengembalikan perilaku konsumsi sehat masyarakat lokal Desa Ujungpangkah Gresik,” 2021, [Online]. Available: http://digilib.uinsby.ac.id/id/eprint/46376.
C. I. R. Marsiti, N. M. Suriani, and N. W. Sukerti, “Strategi Pengembangan Makanan Tradisional Berbasis Teknologi Informasi Sebagai Upaya Pelestarian Seni Kuliner Bali,” J. IKA, vol. 17, no. 2, p. 128, 2019, doi: 10.23887/ika.v17i2.19844.
R. Kurniawati and S. Lestari, “Preserving Indonesian Traditional Food An Overview of Food Museum Attraction,” pp. 423–426, 2016, doi: 10.2991/atf-16.2016.64.
G. Prajena, J. Harefa, Alexander, B. O. Josephus, and A. H. Nawir, “Indonesian Traditional Food Image Recognition using Convolutional Neural Network,” in 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), IEEE, Nov. 2022, pp. 142–147. doi: 10.1109/ICIMCIS56303.2022.10017684.
A. Wibisono, H. A. Wisesa, Z. P. Rahmadhani, P. K. Fahira, P. Mursanto, and W. Jatmiko, “Traditional food knowledge of Indonesia: a new high-quality food dataset and automatic recognition system,” J Big Data, vol. 7, no. 1, pp. 1–19, Dec. 2020, doi: 10.1186/S40537-020-00342-5/FIGURES/8.
D. Sarwinda et al., “Automatic Multi-class Classification of Indonesian Traditional Food using Convolutional Neural Networks,” in 2020 3rd International Conference on Computer and Informatics Engineering, IC2IE 2020, Institute of Electrical and Electronics Engineers Inc., Sep. 2020, pp. 43–47. doi: 10.1109/IC2IE50715.2020.9274636.
V. G., P. Vutkur, and V. P., “Food classification using transfer learning technique,” Global Transitions Proceedings, vol. 3, no. 1, pp. 225–229, Jun. 2022, doi: 10.1016/j.gltp.2022.03.027.
A. S. Sagor, J. A. Shuha, M. Moniruzzaman, Md. M. Uddin, R. A. Tuhin, and M. S. H. Khan, “Bangladeshi Food Classification Using Transfer Learning and Ensemble Model,” in 2023 26th International Conference on Computer and Information Technology (ICCIT), IEEE, Dec. 2023, pp. 1–6. doi: 10.1109/ICCIT60459.2023.10441590.
P. K. Fahira, Z. P. Rahmadhani, P. Mursanto, A. Wibisono, and H. A. Wisesa, “Classical Machine Learning Classification for Javanese Traditional Food Image,” in 2020 4th International Conference on Informatics and Computational Sciences (ICICoS), IEEE, Nov. 2020, pp. 1–5. doi: 10.1109/ICICoS51170.2020.9299039.
A. Wulandari, “Comparing CNN Architecture for Indonesian Speciality Cuisine Classification,” Engineering, MAthematics and Computer Science Journal (EMACS), vol. 6, no. 1, pp. 55–60, Jan. 2024, doi: 10.21512/emacsjournal.v6i1.11076.
A. Hosna, E. Merry, J. Gyalmo, Z. Alom, Z. Aung, and M. A. Azim, “Transfer learning: a friendly introduction,” J Big Data, vol. 9, no. 1, Dec. 2022, doi: 10.1186/s40537-022-00652-w.
R. Ribani and M. Marengoni, “A Survey of Transfer Learning for Convolutional Neural Networks,” in 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), IEEE, Oct. 2019, pp. 47–57. doi: 10.1109/SIBGRAPI-T.2019.00010.
F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions.”
K. Morani, E. K. Ayana, and D. Unay, “Covid-19 detection using modified xception transfer learning approach from computed tomography images,” International Journal of Advances in Intelligent Informatics, vol. 9, no. 3, pp. 524–536, Nov. 2023, doi: 10.26555/ijain.v9i3.1432.
Rismiyati, S. N. Endah, Khadijah, and I. N. Shiddiq, “Xception Architecture Transfer Learning for Garbage Classification,” in 2020 4th International Conference on Informatics and Computational Sciences (ICICoS), IEEE, Nov. 2020, pp. 1–4. doi: 10.1109/ICICoS51170.2020.9299017.
X. Wu, R. Liu, H. Yang, and Z. Chen, “An Xception Based Convolutional Neural Network for Scene Image Classification with Transfer Learning,” in Proceedings - 2020 2nd International Conference on Information Technology and Computer Application, ITCA 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 262–267. doi: 10.1109/ITCA52113.2020.00063.
K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” Sep. 2014, [Online]. Available: http://arxiv.org/abs/1409.1556
L. Wen, X. Li, X. Li, and L. Gao, “A New Transfer Learning Based on VGG-19 Network for Fault Diagnosis,” in 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), IEEE, May 2019, pp. 205–209. doi: 10.1109/CSCWD.2019.8791884.
G. Meena, K. K. Mohbey, A. Indian, and S. Kumar, “Sentiment Analysis from Images using VGG19 based Transfer Learning Approach,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 411–418. doi: 10.1016/j.procs.2022.08.050.
A. Faghihi, M. Fathollahi, and R. Rajabi, “Diagnosis of skin cancer using VGG16 and VGG19 based transfer learning models,” Multimed Tools Appl, vol. 83, no. 19, pp. 57495–57510, Dec. 2023, doi: 10.1007/s11042-023-17735-2.
I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects,” IEEE Access, vol. 10, pp. 99129–99149, 2022, doi: 10.1109/ACCESS.2022.3207287.
I. D. Mienye, Y. Sun, and Z. Wang, “IMPROVED PREDICTIVE SPARSE DECOMPOSITION METHOD WITH DENSENET FOR PREDICTION OF LUNG CANCER,” International Journal of Computing, pp. 533–541, Dec. 2020, doi: 10.47839/ijc.19.4.1986.
DOI: https://doi.org/10.15408/jti.v17i2.35034 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nurhayati, Zulfiandri, Wilda Nurjannah, Irlan Muntasha
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.
JTI Visitor Counter: View JTI Stats