Machine Learning for the Model Prediction of Final Semester Assessment (FSA) using the Multiple Linear Regression Method
Abstract
Corona virus (COVID-19) is the reason behind the collapse of the National Assembly. The first is the Final Semester Assessment (FSA) , which is a component of the student's graduation. The aforementioned evaluation process is a crucial consideration for the teacher since it uses several intricate surveys and mark components. A prediction model is employed to assist teachers in providing suitable results for student learning. The method that is used is called the multiple linear regression. This multiple linear regression algorithm yields an accuracy level of approximately 92%. The analysis results using the method are used as a guide to understanding student’s index. This index is a rating that appears based on the Minimum Credit Count (MCC). Therefore, the goal of this study is to determine students' understanding of the FSA prediction value, which will be taken into consideration through the results of the MCC weights in the form of a range in the form of "Grade." Additionally, the research aims to determine the accuracy of the results from the model obtained using multiple linear regression algorithms in predicting students' FSA.
Keywords
Full Text:
PDFReferences
Arrahman Kaffi et. al, The Development of Interactive Games for Covid-19 Prevention Using Indonesian Health Protocols, Jurnal Teknik Informatika Vol. 15 No. 2, (101-109), 2022.
KEMENDIKBUD, “SURAT EDARAN TENTANG PENIADAAN UJIAN NASIONAL DAN UJIAN KESETARAAN SERTA PELAKSANAAN UJIAN SEKOLAH,” 2021. https://lldikti13.kemdikbud.go.id/2021/02/04/surat-edaran-menteri-pendidikan-dan-kebudayaan-nomor-1-tahun-2021-tentang-peniadaan-ujian-nasional-dan-ujian-kesetaraan-serta-pelaksanaan-ujian-sekolah-dalam-masa-darurat-penyebaraan-corona-virus-dise/
K. Farouq Mauladi and Masruroh, “PERBANDINGAN METODE REGRESI LINEAR DAN NEURAL NETWORK BACKPROPAGATION DALAM PREDIKSI NILAI UJIAN NASIONAL SISWA SMP MENGGUNAKAN SOFTWARE R,” JOUTICA, vol. 5, no. 1, pp. 331–336, 2020.
S. Kumala Sari and J. Manurung, “Implementasi Jaringan Syaraf Tiruan Untuk Memprediksi Tingkat Pemahaman Siswa Pada Mata Pelajaran Ujian Akhir Sekolah (UAS) di SD Mis An Nur Sukamandi Menggunakan Metode Backpropragation,” JIKOMSI : Jurna Ilmu Komputer dan Sistem Informasi, vol. 3, no. 3, pp. 283–292, 2021.
R. Afriani, S. Hotlan Sitorus, and U. Ristian, “Aplikasi Prediksi Nilai Siswa Sekolah Dasar Menggunakan Metode Radial Basis Function Berbasis Web (Studi Kasus : SDN 19 Sungai Raya),” Coding: Jurnal Komputer dan Aplikasi, vol. 07, no. 03, pp. 85–96, 2019.
Jesi Pebralia, Rainfall Analysis using Machine Learning-Multiple Linear Regression Method Based on Python and Jupyter Notebook, JIFP (Jurnal Ilmu Fisika dan Pembelajarannya) Vol. 6, No. 2, 23-30, Desember 2022.
[7] G. MARDIATMOKO, “PENTINGNYA UJI ASUMSI KLASIK PADA ANALISIS REGRESI LINIER BERGANDA,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 14, no. 3, pp. 333–342, Oct. 2020, doi: 10.30598/barekengvol14iss3pp333-342.
[8] E. Retnoningsih and R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised dan Unsupervised Learning Menggunakan Python,” BINA INSANI ICT JOURNAL, vol. 7, no. 2, pp. 156–165, 2020.
[9] A. Ahmad, “Mengenal Artificial Intelligence, Machine Learning, Neural Network, dan Deep Learning,” Yayasan Cahaya Islam, Jurnal Teknologi Indonesia, 2017.
S. Kumar, D. Shah dan S. Patel, "Heart Disease Prediction using Machine Learning Techniques," SN Computer Science, vol. I, no. 1, p. 345, Oct. 2020.
W. Budiharto, Machine Learning & Computational Intelligence, VI. Yogyakarta: ANDI OFFSET, 2016.
R. Z. Nainggolan, K. Ibnutama, and M. G. Suryanata, “Implementasi Data Mining Dengan Metode Regresi Linier BergandaDalam Estimasi Mahasiswa Baru Pada SekolahTinggi Agama Islam Raudhatul Akmal BatangKuis,” Jurnal CyberTech, vol. 1, no. 1, pp. 13–20, 2021
[[13] M. S. Prof. Dr. Suyono, “Analisis Regresi untuk Penelitian,” I., Yogyakarta: DEEPUBLISH (CV BUDI UTAMA), 2015.
[[14] M. S. Prof. Dr. Suyono, “Analisis Regresi untuk Penelitian,” I., Yogyakarta: DEEPUBLISH (CV BUDI UTAMA), 2015.
[[15] P. Wentworth, J. Elkner, A. B. Downey, and C. Meyers, "How to Think Like a Computer Scientist: Learning with Python 3 Documentation Release 3rd Edition," 2012
DOI: https://doi.org/10.15408/jti.v17i1.28652 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Fitria Rachmawati, Jejen Jaenudin, Novita Br Ginting, Panji Laksono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.
JTI Visitor Counter: View JTI Stats