Classification of Geometric Batik Motif Typical of Indonesian Using Convolutional Neural Network

Muhammad Wahyu Ilahi, Chairu Nisa Apriyani, Anita Desiani, Nuni Gofar, Yuli Andriani, Muhammat Rio Halim

Abstract


Batik is a world heritage from Indonesia which is a characteristic of Indonesian culture. On October 2, 2009 batik has been awarded as a cultural heritage from UNESCO. Indonesia has 5.849 batik patterns from Aceh to Papua. The ability to recognize batik cloth patterns is certainly quite difficult and only owned by certain people who have expertise. One way to identify batik patterns is by using a pattern recognition classification method based on quantitative measurements of the main features or characteristics of an object. Deep Learning is one solution to detect batik patterns automatically. One of deep learning methods that can classify patterns of batik patterns is Convolutional Neural Network (CNN). CNN is able to group and detect objects in the image automatically by accepting input data with a size of m×n. CNN uses image input through a convolution layer and be processed according to the specified filter. Each layer produces a pattern from several parts of the image that facilitates the classification process. This study uses the CNN method and obtains the average value of 96% accuracy, 96,78% precision, 96,74% recall, and 96,74%.


Keywords


Batik; Classification; Convolutional Neural Network

Full Text:

PDF

References


E. Krisnawati, N. Sunarni, L. M. Indrayani, A. N. Sofyan, and T. Nur, “Identity Exhibition in Batik Motifs of Ebeg and Pataruman,” SAGE Open, vol. 9, no. 2, 2019.

D. Syarifuddin, “Nilai Budaya Batik Tasik Parahiyangan Sebagai Daya Tarik Wisata Jawa Barat,” J. Manaj. Resort dan Leis., vol. 14, no. 2, pp. 9–20, 2017.

I. Mahuda, “Eksplorasi Etnomatematika Pada Motif Batik Lebak Dilihat Dari Sisi Nilai Filosofi Dan Konsep Matematis,” Lebesgue, vol. 1, no. 1, pp. 29–38, 2020.

R. Mawan, “Klasifikasi motif batik menggunakan Convolutional Neural Network,” Jnanaloka, pp. 45–50, 2020.

A. Hermawati, C. Anam, C. Aditya, D. Anggarani, and S. Bahri, “Maksimalisasi Kapasitas Produksi Dan Kualitas Batik Melalui Implementasi Canting Elektrik Pada Industri Rumah Tangga Batik Di Keluarahan Merjosari Malang,” Reson. J. Ilm. Pengabdi. Masy., vol. 4, no. 1, pp. 40–57, 2020.

S. F. Tumewu, “Klasifikasi Motif Batik menggunakan metode Deep Convolutional Neural Network dengan Data Augmentation,” 2020.

D. D. Prihatin, B. Hidayat, and S. Saidah, “Deteksi Batik Bojonegoro menggunakan Metode Gray Level Co- Occurrence Matrix (GLCM) dan Naive Bayes,” vol. 5, no. 3, pp. 4650–4657, 2018.

Y. Sari, “Klasifikasi Pengenalan Motif Batik Berbasis Image Retrival,” Jukung (Jurnal Tek. Lingkungan), vol. 4, no. 2, pp. 27–33, 2018.

Y. Sari, M. Alkaff, and R. A. Pramunendar, “Classification of coastal and Inland Batik using GLCM and Canberra Distance,” AIP Conf. Proc., vol. 1977, no. June, 2018.

D. Hardiyanto, S. Kristiyana, D. Kurniawan, and D. A. Sartika, “Klasifikasi Motif Citra Batik Yogyakarta Menggunakan Metode Adaptive Neuro Fuzzy Inference System,” Setrum Sist. Kendali-Tenaga-elektronika-telekomunikasi-komputer, vol. 8, no. 2, p. 229, 2019.

N. A. Azizah and I. Maurits, “Implementasi Deep Learning untuk Pengklasifikasian Motif Batik menggunakan Metode CNN,” Univ. Gunadarma, 2020.

W. Chen, B. Yang, J. Li, and J. Wang, “An approach to detecting diabetic retinopathy based on integrated shallow convolutional neural networks,” IEEE Access, vol. 8, pp. 178552–178562, 2020.

H. Song, xiu-ying Han, C. E. Montenegro-Marin, and S. krishnamoorthy, “Secure prediction and assessment of sports injuries using deep learning based convolutional neural network,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 3, pp. 3399–3410, 2021.

A. Desiani, Erwin, B. Suprihatin, S. Yahdin, A. I. Putri, and F. R. Husein, “Bi-path Architecture of CNN Segmentation and Classification Method for Cervical Cancer Disorders Based on Pap-smear Images,” IAENG Int. J. Comput. Sci., vol. 48, no. 3, 2021.

N. Sharma, M. K. Jain, Nirvikar, and A. K. Agarwal, “Brain Tumor Classification Using Cnn,” Adv. Appl. Math. Sci., vol. 20, no. 3, pp. 397–407, 2021.

M. Nawaz, A. A. Sewissy, and T. H. A. Soliman, “Multi-class breast cancer classification using deep learning convolutional neural network,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 6, pp. 316–322, 2018.

H. A. Elnemr, “Convolutional neural network architecture for plant seedling classification,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 8, pp. 319–325, 2019.

L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021.

T. Dwi Antoko, M. Azhar Ridani, and A. Eko Minarno, “Klasifikasi Buah Zaitun Menggunakan Convolution Neural Network,” Komputika J. Sist. Komput., vol. 10, no. 2, pp. 119–126, 2021.

H. Ide and T. Kurita, “Improvement of learning for CNN with ReLU activation by sparse regularization,” Proc. Int. Jt. Conf. Neural Networks, vol. 2017-May, no. May 2017, pp. 2684–2691, 2017.

M. Mohammed, S. S. Nalluru, S. Tadi, and R. Samineni, Brain tumor image classification using convolutional neural networks, vol. 29, no. 5. Springer Singapore, 2019.

S. Albelwi and A. Mahmood, “A framework for designing the architectures of deep Convolutional Neural Networks,” Entropy, vol. 19, no. 6, 2017.

E. N. Arrofiqoh and Harintaka, “Implementasi Metode Convolutional Neural Network untuk Klasifikasi Tanaman pada Citra Resolusi Tinggi,” Geomatika, vol. 24, no. 2, pp. 61–68, 2018.

S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural networks,” Int. J. Eng. Appl. Sci. Technol., vol. 04, no. 12, pp. 310–316, 2020.

R. A. Pangestu, B. Rahmat, and F. T. Anggraeny, “Implementasi Algoritma CNN untuk Klasifikasi Citra Lahan dan Perhitungan Luas,” Inform. dan Sist. Inf., vol. 1, no. 1, pp. 166–174, 2020.

S. Deepak and P. M. Ameer, “Brain tumor classification using deep CNN features via transfer learning,” Comput. Biol. Med., vol. 111, p. 103345, 2019.

T. Bariyah, M. A. Rasyidi, and N. Ngatini, “Convolutional Neural Network untuk Metode Klasifikasi Multi-Label pada Motif Batik,” Techno.Com, vol. 20, no. 1, pp. 155–165, 2021.

A. Y. Wicaksono, N. Suciati, C. Fatichah, K. Uchimura, and G. Koutaki, “Modified Convolutional Neural Network Architecture for Batik Motif Image Classification,” IPTEK J. Sci., vol. 2, no. 2, pp. 26–30, 2017.

R. K. Tjondrowiguno et al., “Aplikasi Pengenalan Pola Batik Dengan Menggunakan Metode Gray-Level Cooccurrence Matrix,” J. Infra, vol. 5, pp. 0–6, 2018.

C. Jatmoko and D. Sinaga, “A Classification of Batik Lasem using Texture Feature Ecxtraction Based on K-Nearest Neighbor,” J. Appl. Intell. Syst., vol. 3, no. 2, pp. 96–107, 2019.




DOI: https://doi.org/10.15408/jti.v15i1.24968 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Muhammad Wahyu Ilahi, Chairu Nisa Apriyani, Anita Desiani, Nuni Gofar, Yuli Andriani, Muhammat Rio Halim

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id


Creative Commons Licence
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.

JTI Visitor Counter: View JTI Stats

 Flag Counter