RUTE TERPENDEK ALGORITMA PARTICLE SWARM OPTIMIZATION DAN BRUTE FORCE UNTUK OPTIMASI TRAVELLING SALESMAN PROBLEM

Muchamad Kurniawan, Farida Farida, Siti Agustini

Abstract


Distribution becomes an important measure of marketing success. Traveling Salesman Problem is an example of a case that can be implemented in a distribution case study to get the shortest route through which a distributor passes. The distributor must pass each node (address or city) once in a while and then return to the node where he started. Traveling salesman problems emerge as part of logistical and transportation problems that have developed and utilized in the current period which is growing in various sectors. This research proposes using the Particle Swarm Optimization and Brute Force method to compare the performance of the two methods to get the shortest route. The study was conducted in several experiments the number of points (nodes) namely 5, 10, 15, 20, 25, and 30 nodes. Overall experiments, the Particle Swarm Optimization algorithm is superior to Brute Force. The route produced by Particle Swarm Optimization has a shorter distance than Brute Force


Full Text:

PDF

References


B. Ahmadi dan D. Jayawati, "Rancang Bangun Decision Support System Untuk Pemilihan Rute Pengirima Paket Pada Perusahaan Penyedia Jasa Logistik", Jurnal MAnajemen Industri dan Logistik, Vol.1, No. 2, 2018.

M. Hasibuan dan Lusiana, "Pencarian Rute Terbaik Pada Travelling Salesman Problem (TSP) Menggunakan Algoritma Genetika pada Dinas

Kebersihan dan Pertamanan kota Pekanbaru", Jurnal Sains dan Teknologi Informasi, Vol. 1, No.1, 2015.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of the 1995 IEEE International Conference on Neural Network, pp. 1942–1948, 1995.

E. Baidoo and S. O. Oppong, "Solving the TSP using Traditional Approach", International Journal of Computer Application , Vol. 152, No. 8, 2016.

X. Yan, C. Zhang, W. Lou, W. Li, W. Chen, dan H. Liu, "Solve Traveling Salesman Problem Using Particle Swarm Optimization Algorithm", International Journal of Computer Science, Vol. 9, No.2, 2012.

M. Panda, "Performance Comparison of Genetic Algorithm, Particle Swarm Optimization & Simulated Annealing Applied to TSP", Applied Journal of Applied Engineering Research, Vol.13, No. 9, 2018.

M. Kurniawan dan N. Suciati, "Premise Parameter Optimization on Adaptive Network Based Fuzzy Inference System Using Modification Hybrid Particle Swarm Optimization and Genetic Algorithm", Vol. 22, No. 2, 2018.

M. Kurniawan and N. Suciati, “177-460-2-RV (1),” INTEGER J. Inf. Technol., vol. 2, pp. 31–40, 2017.

K.A.F.A. Samah, N. Sabri, R. Hamzah, R. Roslan, N.A. Mangshor, A.A.M. Asri, "Brute Force Algorithm Implementation for Traveljoy Travelling Recommendation System", Indonesian Journal of Electrical Engineering and Computer Science, Vol.16, No.2, 2019.

B. Santosa dan P. Willy, "Metode Heuristik konsep dan Implementasi", Guna Widya, 2011.




DOI: https://doi.org/10.15408/jti.v14i2.19094 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Muchamad Kurniawan, Farida Farida, Siti Agustini

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id


Creative Commons Licence
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.

JTI Visitor Counter: View JTI Stats

 Flag Counter