ANALISA KLASIFIKASI KUALITAS MAHASISWA LULUSAN BERDASARKAN JALUR PENERIMAAN MENGGUNAKAN ALGORITMA C4.5 (STUDI KASUS: UNIVERSITAS LAMPUNG)
Abstract
Universities need a quality evaluation process based on the standards of the National Accreditation Agency for Higher Education (BAN-PT) every year. Therefore, it is necessary for universities knowing the students to evaluate and to maintain the University's Education Efficiency Number (AEE). One of the standards that has been determined by BAN-PT is the quality of students that can be seen from the GPA, the accuracy of completing studies, thesis, path admission, and others. The purpose of this study is to provide information about the quality of students based on SNMPTN and SBMPTN admission with data mining techniques using RapidMiner software in the application of the C4.5 algorithm and using the research method of the Cross-Industry Standard Process for Data Mining (CRIPS-DM). The results of this study were students who has graduated of class I quality was 46% from the SBMPTN path admission, 28% of the SNMPTN path admission, and class II category was 11% from the SBMPTN path admission, and 15% from the SNMPTN path admission. The results of accuracy obtained in decision tree modeling got an accuracy value of 97.46% with an error value of 0.98% and the value of Area Under Curve (AUC) of 0.973 with an error value of 0.014 which is classified into a excellent classification.
Keywords
Full Text:
PDFReferences
E.T.L. Kusrini, Algoritma Data Mining, 1st ed. Yogyakarta: Andi Offset, 2009.
Y. S. Nugroho, “Penerapan algoritma C4.5 untuk klasifikasi predikat kelulusan mahasiswa fakultas komunikasi dan informatika universitas
D. S. S. M.S. Sani Susanto Ph.D. Pengantar Data Mining: Menggali Pengetahuan dari Bongkahan Data. Yogyakarta, 2010.
F. A. Hermawati, Data Mining, 1st ed. Surabaya: Penerbit Andi, 2009.
BAN-PT, “Buku 1 Naskah Akademik Akreditasi Institusi Perguruan Tinggi,” Badan Akreditasi Nas. Perguru. Tinggi, 2011.
S. A. Zega, “Penggunaan Pohon Keputusan untuk Klasifikasi Tingkat Kualitas Mahasiwa Berdasarkan Jalur Masuk Kuliah,” Semin. Nas. Apl. Teknol. Inf. Yogyakarta, pp. 7–13, 2014.
D. K. R. Sudrajat1, I. Irianingsih1, “Analysis of data mining classification by comparison of C4.5 and ID algorithms,” IOP Conf. Ser. Mater. Sci. Eng., vol. 755, no. 1, 2016.
G. Casella, S. Fienberg, and I. Olkin, An Introduction to Statistical Learning with Applications in R, vol. 102. New York Heidelberg Dordrecht London: Springer, 2006.
A. P. Fadillah, “Penerapan Metode CRISP-DM untuk Prediksi Kelulusan Studi Mahasiswa Menempuh Mata Kuliah (Studi Kasus Universitas XYZ),” J. Tek. Inform. dan Sist. Inf., vol. 1, pp. 260–270, 2015.
C. Shaerer, the-Crisp-Dm-Model-the-New-Blueprint-for-Data-MiningShearer-Colin, vol. 5, no. 4. 2000.
L. A. Dennis Aprilla C, Donny Aji BAskoro, Belajar Data Mining dengan RapidMiner. Jakarta, 2013.
A. Asroni, B. Masajeng Respati, and S. Riyadi, “Penerapan Algoritma C4.5 untuk Klasifikasi Jenis Pekerjaan Alumni di Universitas Muhammadiyah Yogyakarta,” Semesta Tek., vol. 21, no. 2, pp. 158–165, 2018.
T. Seberang, D. Menggunakan, and C. Algoritm a, “Data Mining Untuk Klasifikasi Penentuan Peminatan Siswa Sma Negeri 2,” Semin. Nas. APTIKOM, pp. 28–29, 2016.
BAN-PT, Buku 6-Matriks Penilaian Akreditasi Sarjana. Bandan Akreditasi Nasional Perguruan Tinggi, 2011.
F. Gorunescu, Data Mining Concepts, Models and Techniques. Verlag Berlin
DOI: https://doi.org/10.15408/jti.v12i2.11171 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Resalina Oktaria, Muhamad Komarudin, Mona Arif Muda
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.
JTI Visitor Counter: View JTI Stats