The Model of Arabic Learning Translation Using Artificial Intelligence in Social-Media

Abd. Rozak, Kisno Umbar, Azkia Muharom Albantani

Abstract


This research is aimed at revealing the existence of new alternatives in translation teaching media. Translation teaching media is still strongly suspected to be dominated by the use of dictionaries, both in print such as Munawir, Munjid, Mahmud Yunus, and digital dictionaries like al-Maany, Google Translate, and other applications. The alternative media offered is social media such as Twitter (X). Social media usually used in public communication can be utilized as an alternative for translation learning. How to utilize social media such as Twitter in translation learning? How accurate is social media in teaching Arabic-Indonesian or Indonesian-Arabic translation? This research falls under the category of qualitative research when viewed from the source of text data used. The method used in the research is descriptive qualitative method. The researcher will systematically present examples of using social media (Twitter) in translation learning. The data source in this study is tweets in Arabic language on Twitter. The results of this study indicate that Twitter can be an alternative translation teaching media. The auto-translate system available on Twitter provides several advantages in translation teaching, such as access to authentic and contemporary materials, development of translation speed and accuracy, exercise in finding equivalent words that are currently trending in the Arab world. However, the translations displayed by the auto-translate system on Twitter still need to be considered because there are various contexts that machine translators cannot read.

Keywords


translation media; auto-translate; Twitter (X)

Full Text:

PDF

References


Akmaliyah. (2017). Teori dan Praktek Terjemah Indonesia-Arab. Kencana.

Al-Ayubi, M. S. (2017). Pemanfaatan Google Translator Sebagai Media Pembelajaran Pada Terjemahan Teks Berita Asing. Jurnal Teknodik, 21(2).

Ameur, M. S. H., Meziane, F., & Guessoum, A. (2020). Arabic Machine Translation: A survey of the latest trends and challenges. Computer Science Review, 38.

Anisya, N. (2021). Analisis Kesalahan Makna Pada Terjemahan (Arab-Indonesia). Al-Ibrah, 6(1).

Arieskal, P. K., & Herdiani, N. (2018). Pemilihan Teknik Sampling Berdasarkan Perhitungan Efisiensi Relatif. Statistika, 6(2).

Arifatun, N. (2012). Kesalahan penerjemahan teks bahasa Indonesia ke bahasa Arab melalui Google Translate (Studi analisis sintaksis). Lisanul Arab: Journal of Arabic Learning and Teaching, 1(1).

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate (Version 7). arXiv. https://doi.org/10.48550/ARXIV.1409.0473

Brour, M., & Benabbou, A. (2021). ATLASLang NMT: Arabic text language into Arabic sign language neural machine translation. Journal of King Saud University - Computer and Information Sciences, 33(9).

Bustomi, J., & Hudaya, U. (2018). Bentuk dan Jabatan Dalam Struktur Kalimat Bahasa Arab dan Bahasa Indonesia. Ta’lim al-‘Arabiyyah : Jurnal Pendidikan Bahasa Arab Dan Kebahasaaraban, 2(1).

Faqih, A. (2018). Penggunaan Google Translate dalam Penerjemahan Teks Bahasa Arab ke dalam Bahasa Indonesia. ALSUNIYAT: Jurnal Penelitian Bahasa, Sastra, dan Budaya Arab, 1(2).

Farkas, A., & Németh, R. (2022). How to measure gender bias in machine translation: Real-world oriented machine translators, multiple reference points. Social Sciences & Humanities Open, 5(1).

Hasyim, M., Saleh, F., Yusuf, R., & Abbas, A. (2021). Artificial Intelligence: Machine Translation Accuracy in Translating French-Indonesian Culinary Texts. Available at SSRN 3816594.

Hensa Utama, M. A., & Masrukhi, Moh. (2021). Analisis Teknik Penerjemahan Bahasa Arab ke Bahasa Indonesia dalam Ceramah Habib Umar Bin Hafidz. Al-Tsaqafa : Jurnal Ilmiah Peradaban Islam, 18(2).

Hidayat, A. (2020). Penerjemahan Harfiah: Dominasi dalam Teknik Penerjemahan Surat Informal. Wanastra: Jurnal Bahasa dan Sastra, 12(1).

Izmayanti, D. K. (2023). Project Based Learning dalam Mata Kuliah Terjemahan Indonesia-Jepang. Prosiding MINASAN, 4.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F., Wattenberg, M., & Corrado, G. (2017). Google’s multilingual neural machine translation system: Enabling zero-shot translation. Transactions of the Association for Computational Linguistics, 5.

Khoiriyah, H. (2020). Kualitas hasil terjemahan google translate dari bahasa Arab ke bahasa Indonesia. Al Mi’yar: Jurnal Ilmiah Pembelajaran Bahasa Arab Dan Kebahasaaraban, 3(1).

Nababan, M., Nuraeni, A., & Sumardiono. (2012). Pengembangan Model Penilaian Kualitas Terjemahan. Kajian Linguistik Dan Sastra, 24(1).

Perdana, D. H. (2017). Strategi penerjemahan bahasa Arab yang berterima dan mudah dipahami. Jurnal Bahasa Lingua Scientia, 9(1).

Ruhmadi, A., & Al Farisi, M. Z. (2023). Analisis Kesalahan Morfologi Penerjemahan Arab–Indonesia pada ChatGPT. Aphorisme: Journal of Arabic Language, Literature, and Education, 4(1).

Wuryantoro, A. (2011). Analisis Hasil Mesin Terjemahan dalam Pengajaran Penerjemahan. Jurnal Pendidikan, 17(2).

Xu, J., Yang, P., Xue, S., Sharma, B., Sanchez-Martin, M., Wang, F., Beaty, K. A., Dehan, E., & Parikh, B. (2019). Translating cancer genomics into precision medicine with artificial intelligence: Applications, challenges and future perspectives. Human Genetics, 138(2).

Yang, S., Wang, Y., & Chu, X. (2020). A survey of deep learning techniques for neural machine translation. ArXiv Preprint ArXiv:2002.07526.

Yves, G. (2019). Impact of technology on Translation and Translation Studies. Russian Journal of Linguistics, 23(2).




DOI: https://doi.org/10.15408/a.v11i1.39757 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Indexed by:

CrossRef ebsco DOAJ sinta Google Scholar Advanced Sciences Index (ASI) MoraRef MoraRef


 

License

© Copyright CC BY-SA

web analytics View My Stats

Arabiyat, p-ISSN: 2356-153X, e-ISSN: 2442-9473