Ammonia (NH3) Gas Control System in Chicken Coops Using Fuzzy Logic Based Internet of Things (IoT) Method

Khasbianta Supriadi, Ambran Hartono Hartono, Salsabila Tahta Hirani Putri, Hanif Fakhrurraja

Abstract


Chicken productivity increases every year, resulting in air pollution in the form of NH3 generated by chicken waste, which is felt by the residents living around the chicken coop. The purpose of this research is to design an ammonia gas control system using Matlab, with the ammonia gas sensor MQ-135 and the humidity sensor DHT11 as parameters, to minimize the ammonia gas levels. This system operates by transmitting information about the condition of ammonia gas levels using a fuzzy logic control system as the technical decision-making mechanism for driving the exhaust fan based on data from the DHT11 and MQ-135 sensors. In this research, the fuzzy logic method was employed to determine the membership functions for the DHT11 sensor (dry, moist, wet) and MQ-135 sensor (normal, moderate, high), resulting in decisions of safe, moderate, and dangerous levels. The data is monitored on a platform through the Blynk app and Thingspeak, thus connecting the Internet of Things (IoT) to the internet network using the NodeMCU ESP8266 as the microcontroller. This research yields an ammonia gas control system that effectively manages air quality affected by chicken waste, with sensor accuracy levels exceeding 97%.

Keywords


Control System; Fuzzy Logic; Internet of Things (IoT); Thingspeak; Blynk.FST

Full Text:

PDF Remote

References


Li Day, Julie A. Cakebread, Simon M. Loveday, Food proteins from animals and plants: Differences in the nutritional and functional properties, Trends in Food Science & Technology Vol. 119, pp. 428-442, 2022.

A.C. Alves et al., Mixing animal and plant proteins: Is this a way to improve protein techno-functionalities?, Food Hydrocolloids Vol. 97, 105171, December 2019.

J.A. Cakebread et al., Supplementation with Bovine milk or soy beverages recovers bone mineralisation in young growing rats fed an insufficient diet, in contrast to an almond beverage, Curr Dev Nutr. Vol. 3, nzz115, Nov. 2019.

C.-C. Chuang et al. Hemp globulin heat aggregation is inhibited by the chaperone-like action of caseins, Food Hydrocolloids, Vol. 93, pp. 46-55, 2019.

A. Ramdhany and L. Ermansyah, Statistik Peternak dan Kesehatan Hewan, Jakarta: Direktorat Jenderal Peternakan dan Kesehatan Hewan Kementreian Pertanian RI, 2020.

Luca Ferrari, Stefan-Alexandru Panaite, Antonella Bertazzo and Francesco Visioli , Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact, Nutrients, Vol. 14, 5115, 2022.

M. K. Umam, H. S. Prayogi, and A. Nurgiartiningsih, Penampilan Produksi Ayam Pedaging yang dipelihara pada Sistem kandang Lantai Kandang Panggung dan Kandang Bertingkat, J. Ilmu-ilmu Peternak, Vol. 24, No. 3, pp. 79-87, 2015.

Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems, Lancet, Vol. 393, pp. 447–492, 2019.

Adhikari, S.; Schop, M.; de Boer, I.J.M.; Huppertz, T., Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Applications, Nutrients, Vol. 14, pp. 947, 2022.

Goran Gržinić et al., Intensive poultry farming: A review of the impact on the environment and human health, Science of The Total Environment, Vol. 858, Part 3, No. 160014, February 2023

B. P. H. N. (BPHN), Tentang Keamanan, Gizi dan Mutu, Indonesia 2004.

M.E. Abd El-Hack, M.T. El-Saadony, A.M. Shehata, M. Arif, V.K. Paswan, G.E.-S. Batiha, A.F. Khafaga, A.R. Elbestawy, Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review, Environ. Sci. Pollut. Res., Vol. 28, pp. 4989-5004, 2021.

A.O. Adekiya et al., Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra, Sci. Rep., Vol. 10, 2020.

K. Anderson, P.A. Moore, J. Martin, A.J. Ashworth, Evaluation of a novel poultry litter amendment on greenhouse gas emissions, Atmosphere, Vol. 12, p. 563, 2021.

Ashraf, G. Liu, B. Yousaf, M. Arif, R. Ahmed, S. Irshad, A.I. Cheema, A. Rashid, H. Gulzaman, Recent trends in advanced oxidation process-based degradation of erythromycin: pollution status, eco-toxicity and degradation mechanism in aquatic cosystems, Sci. Total Environ, Vol. 772, No. 145389, 2021.

J. Astill, R.A. Dara, E.D.G. Fraser, B. Roberts, S. Sharif, Smart poultry management: smart sensors, big data, and the internet of things, Comput. Electron. Agric., Vol. 170, No. 105291, 2020.

C.G. Awuchi, et al., Mycotoxins’ toxicological mechanisms involving humans, livestock and their associated health concerns: a review Toxins, 14, No. 10.3390, pp. 167, 2022.

J. Baker, W.H. Battye, W. Robarge, S. Pal Arya, V.P. Aneja, Modeling and measurements of ammonia from poultry operations: their emissions, transport, and deposition in the Chesapeake Bay, Sci. Total Environ., Vol. 706, No. 135290, 2020.

O. Bamidele, et al., Antimicrobial usage in smallholder poultry production in Nigeria, Vet. Med. Int., p. 7746144, 2022.

L. Baskin-Graves, et al., Rapid health impact assessment of a proposed poultry processing plant in Millsboro, Delaware, Int. J. Environ. Res. Public Health, Vol. 16, no. 10.3390, p. 3429, 2019.

B. Chandra, No. Title Pengantar Kesehatan Lingkungan, Jakarta: EGC, 2004.

Ghavam, S.; Vahdati, M.; Wilson, IG; Styring, P., Proses Produksi Amonia Berkelanjutan. Depan. Res Energi. Vol. 9, No. 580808, 2021.

Kojima, Y. Sifat Fisika dan Kimia Amoniak sebagai Pembawa Energi dan Hidrogen. Dalam Amonia Bebas CO 2 sebagai Pembawa Energi: Wawasan Jepang ; Springer: Berlin/Heidelberg, Jerman, hlm. 17-28, 2022.

Smith, C.; Bukit, AK; Torrente-Murciano, L. Peran Amonia Haber-Bosch Saat Ini dan Masa Depan dalam Lanskap Energi Bebas Karbon. Lingkungan Energi. Sains. Vol. 13, pp. 331-344, 2020.

Liu, B.; Manavi, N.; Deng, H.; Huang, C.; Shan, N.; Chikan, V.; Pfromm, P. Aktivasi N 2 pada Cluster Ni 3 dan Fe 3 yang Didukung Mangan Nitrida dan Relevansinya dengan Pembentukan Amonia. J.Fisika. kimia. Biarkan. Vol. 12 , pp. 6535–6542, 2021.

N. Roney and L. Fernando, Toxicological Profile For Ammonia. Atlanta: Agency for Toxic Substances and Disease Registry, 2004.

Ben Hassen, T.; El Bilali, H. Dampak Perang Rusia-Ukraina terhadap Ketahanan Pangan Global: Menuju Sistem Pangan yang Lebih Berkelanjutan dan Berketahanan? Makanan, Vol. 11, No. 2301, 2022.

Abdullah Emre Yüzbas¸ıoglu , Cemre Avs¸ar , Ahmet Ozan Gezerman, Current Research in Green and Sustainable Chemistry The current situation in the use of ammonia as a sustainable energy source and its industrial potential Current Research in Green and Sustainable, Chemistry, Vol. 5, No. 100307, 2022.

J.A. Faria, Renaissance of ammonia synthesis for sustainable production of energy and fertilizers, Curr. Opin. Green Sustain. Chem. Vol. 29, No. 100466, 2021.

D.R. MacFarlane, P.V. Cherepanov, J. Choi, B.H.R. Suryanto, R.Y. Hodgetts, J.M. Bakker, F.M. Ferrero Vallana, A.N. Simonov, A roadmap to the ammonia economy, Joule, Vol. 4, pp. 1186–1205, 2020.

J. Humphreys, R. Lan, S. Tao, S. Development and recent progress on ammonia synthesis catalysts for Haber-Bosch process, Adv. Energy Sustain. Res. Vol. 2, No. 2000043, 2020.

G. Qing, R. Ghazfar, S.T. Jackowski, F. Habibzadeh, M.M. Ashtiani, C.P. Chen, M.R. Smith, T.W. Hamann, Recent advances and challanges of electrocatalytic N2 reduction to ammonia, Chem. Rev. Vol. 120, No. 9b00659 , 2020.

K. Brigden and R. Stringer, “Ammonia and Urea Production : Incidents of Ammonia Release From The Profertil Urea and Ammonia Facility,” GreenPeace. Greenpeace Research Laboratories, Department of Biological Sciences, Exeter, UK, 2000.

G.F. Han, F. Li, Z.W. Chen, C. Coppex, S.J. Kim, H.J. Noh, Z. Fu, Y. Lu, C.V. Singh, S. Siahrostami, Q. Jiang, J.B. Baek, Mechanochemistry for ammonia synthesis under mild conditions, Nat. Nanotechnol. Vol. 16, No. 325–330, 2021.

P. Bodhankar, S. Patnaik, G.R. Kale, Thermodynamic analysis of autothermal steamreforming of methane for ammonia production, Int. J. Energy Res. Vol. 45, pp. 6943–6957, 2020.

H. Zhang, L. Wang, J. Van Herle, F. Marechal, U. Desideri, Techno-economic comparison of green ammonia production processes, Appl. Energy, Vol. 259, No. 114135, 2020.

Valera-Medina, F et al., Review on ammonia as a potential fuel: from synthesis to economics, Energy Fuel, Vol. 35, PP. 6964–7029, 2021.

D. Schonvogel, J. Büsselmann, H. Schmies, H. Langnickel, P. Wagner, A. Dyck, High temperature polymer electrolyte membrane fuel cell degradation provoked by ammonia as ambient air contaminant, J. Power Sources, Vol. 502, No. 229993, 2021.

J. Zheng, L. Jiang, Y. Lyu, S.P. Jian, S. Wang, Green synthesis of nitrogen-toammonia fixation: past, present, and future, Energy & Environ. Mater. Pp. 1-6, 2021.

M. Wang, M.A. Khan, I. Mohsin, J. Wicks, A.H. Ip, K.Z. Sumon, C.-T. Dinh, E.H. Sargent, I.D. Gates, M.G. Kibria, Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber- Bosch processes? Energy Environ. Sci. Vol. 14, pp. 2535–2548, 2021.

O. Sumarna, Kimia fisika 1 Modul: Sifat-sifat Gas. Jakarta: Universitas Terbuka Press, 2009.

N. Ulupi and S. K. Inayah, “Performa Ayam Broiler dengan Pemberian Serbuk Pinang sebagai Feed Aditive,” J. Ilmu Produksi dan Teknol. Has. Peternak., vol. 3, no. 1, pp. 8–11, 2015.

Bray, C.D., et al., Global emissions of NH3, NOx, and N2O from biomass burning and the impact of climate change. J. Air Waste Manag. Assoc. Vol. 71 No. 1, pp. 102–114, 2021.

Domingo, N.G.G.,et al., Air quality-related health damages of food. Proc. Natl. Acad. Sci. U. S. A, Vol. 118, No.20, 2021.

Gu, B., Zhang, et al.. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science Vol. 374, No. 6568, pp. 758–762, 2021.

Han, X., Zhu, L., Liu, M., Song, Y., Zhang, M., Numerical analysis of the impact of agricultural emissions on PM2.5 in China using a high-resolution ammonia emissions inventory. Atmos. Chem. Pys. Discuss. Vol. 3, pp. 1–31, 2020.

Kanter, D.R., Chodos, O., Nordland, O., Rutigliano, M., Winiwarter, W., Gaps and opportunities in nitrogen pollution policies around the world. Nat. Sustain. Vol. 3, No. 11, pp. 956–963, 2020.

O. P. Hulu, M. Sihombing, R. H. Saputro, A. Darmawan, and Y. Herbani, “Aplikasi Teknologi Nanopartikel Perak (AgNPs) dalam Air Minum dan Bentuk Kabut terhadap Kadar Amonia Ekskreta Broiler,” J. Ilmu Nutr. dan Teknol. Pakan, vol. 17, no. 2, pp. 26–31, 2019.

Ravi Kant Jain, Experimental performance of smart IoT-enabled drip irrigation system using and controlled through web-based applications, Smart Agricultural Technology, Vol. 4, No. 100215, 2023.

A. Ullah, O. B. Kharisma, and I. Santoso, “Fuzzy Logic Implementation to Control Temperature andHumidity in a Bread Proofing Machine,” Indones. J. Artif. Intell. Data Min., vol. 1, no. 2, p. 66, 2018.

Rajesh Bose, Sandip Roy, Haraprasad Mondal, A novel algorithmic electric power saver strategies for real-time smart poultry farming, e-Prime - Advances in Electrical Engineering, Electronics and Energy, Vol. 2, No. 1000053, 2022.

G. Patel, V. Pillai, P. Bhatt, S. Mohammad, Application of nanosensors in the food industry, in:, Micro and Nano Technologies, Nano sensors For Smart Cities, Elsevier, pp. 355–368, 2020.

O. Debauche, S. Mahmoudi, S. Ahmed Mahmoudi, P. Manneback, J. Bindelle, F. Lebeau, Edge computing and artificial intelligence for real-time poultry monitoring, Procedia Compu.t Sci., Vol. 175, pp. 534-541, 2020.




DOI: https://doi.org/10.15408/fiziya.v6i2.34757 Abstract - 0 PDF - 0 Remote - 0

Refbacks

  • There are currently no refbacks.


Web Analytics Made Easy - StatCounterView My Stats

Flag Counter

Creative Commons License

This work is licensed under a CC-BY-SAÂ