Manufacture of UAV Skywalker 1900 Flying Vehicles Made of Composites

Ferry Setiawan, Muhammad Fauzaan Firmansyah, Dhimas Wicaksono, Ikbal Rizki Putra

Abstract


The purpose of this research is to make a flying vehicle with the SKYWALKER 1900 UAV model for mapping missions with fiber glass reinforced composite materials on the wings and carbon fiber on the fuselage and tail. With composite materials, it is hoped that the structure of the UAV SKYWALKER 1900 will be stronger than previous materials using styrofoam. The method for making flying vehicles in this study uses 3D printing, to print UAV parts such as wings, fuselag and tail. then molding for components is made, and the final stage is manufacturing parts with composites using glass fiber and carbon fiber reinforcement using the vacuum bagging method. the analysis of weight deviation on the fuselag has a value of 70% and the weight deviation on the wings is 52%, the size deviation on the fuselag and wings weight occurs due to the putty process during finishing. the results of the aerodynamic analysis on the fuselag using solid work software, the UAV flight limit is 20 m/s to get the best flight results when flying

 

 


Keywords


Keywords: Fiber glass, Fiber carbon, Composite, Vacuum Bagging, UAV Fixed wing

Full Text:

PDF

References


R. N. A. P. Finda Luthfiany Ustidivanissa*, “Tinjauan Yuridis Pengoperasian Pesawat Tanpa Awak Terhadap Keselamatan Penerbangan Di Wilayah Negara Kesatuan Republik Indonesia (Studi Pada Pt. Uavindo Nusantara, Bandung),” Diponegoro Law J., vol. 6, no. 2, pp. 1–14, 2017, [Online]. Available: https://ejournal3.undip.ac.id/index.php/dlr/article/view/17365.

B. Alemour, O. Badran, and M. R. Hassan, “A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation,” J. Aerosp. Technol. Manag., vol. 11, pp. 1–23, 2019, doi: 10.5028/jatm.v11.1022.

U. Fasel, D. Keidel, L. Baumann, G. Cavolina, M. Eichenhofer, and P. Ermanni, “Composite additive manufacturing of morphing aerospace structures,” Manuf. Lett., vol. 23, pp. 85–88, 2020, doi: 10.1016/j.mfglet.2019.12.004.

M. H. R. Arifin, “Institut teknologi nasional, PENGERTIAN DRONE,” pp. 4–11, 2021.

Muhamad Royan AL Faris, “Visualisasi Pengaruh Sudut dan Kecepatan Aliran Udara Terhadap Stall Airfoil NACA 2415 dan NACA 4424,” vol. 16, pp. 56–62, 2019.

Susanti, “Materi Komposit,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 1981.

G. Kanesan, S. Mansor, and A. Abdul-Latif, “Validation of UAV wing structural model for finite element analysis,” J. Teknol., vol. 71, no. 2, pp. 1–5, 2014, doi: 10.11113/jt.v71.3710.

A. Rahadiyanto, “Perbaikan Proses Pembuatan Produk Komposit Dengan Metode Vacuum Bagging,” Tugas Akhir, Univ. Islam Indones. Yogyakarta, p. 9, 2018.

S. K. Moon, Y. E. Tan, J. Hwang, and Y. J. Yoon, “Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 1, no. 3, pp. 223–228, 2014, doi: 10.1007/s40684-014-0028-x.

S. Billy Suugondo, A. Purna Irawan, and E. Siahaan, “Analisis Kekuatan Komposit Berpenguat Serat Karbon Dengan Matriks Resin Lycal 1011 Terhadap Sifat Mekanis,” J. Heal. Sains, vol. 3, no. 7, pp. 905–913, 2022, doi: 10.46799/jsa.v3i7.452.

M. R. Sirojuddin, S. B. Wibowo, and G. Nugroho, “Perancangan dan Pengujian Terbang Pesawat Tanpa Awak Lokeswara,” Semin. Nas. Inov. dan Apl. Teknol. di Ind., pp. 334–338, 2019.




DOI: https://doi.org/10.15408/fiziya.v5i2.30531 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Web Analytics Made Easy - StatCounterView My Stats

Flag Counter

Creative Commons License

This work is licensed under a CC-BY-SAÂ