Isolation and Characterization of Cellulose from Banana Stems using Microwave Heating

Inda Iliyin, Henny Purwaningsih, Tun Tedja Irawadi

Abstract


During each day of harvest, wasted banana stems are obtained in large quantities. These stems are composed mainly of 74.37% cellulose which is a very important raw material. This study aims to isolate cellulose from banana stems using liquefaction, delignification and bleaching processes with a microwave  at power variations of 450, 600 and 800 W.  The results showed that the highest cellulose content of 86.43% was obtained at 800 W for 14 minutes. Meanwhile, the fourier-transform infrared spectroscopy (FTIR) analysis result did not show a peak at wavenumber 1519 cm-1 which is the specific peak for lignin but showed a peak for cellulose at wavenumber 898 cm-1. Furthermore, XRD analysis of crystallinity showed a typical diffraction peak of cellulose at 22.5o with a degree of crystallinity of 56.8% while, morphological analysis with SEM showed that the sizes of the cellulose fibers produced varied, ranging from 5 to hundreds of micrometers and visible fibrillary fibers


Keywords


Banana stem; microwave; cellulose

References


Alwi H, Idris J, Musa M, Halim K, Hamid K. 2013. A preliminary study of banana stem juice as a plant-based coagulant for treatment of spent coolant wastewater. Journal of Chemistry. 2013:1-7. doi: 10.1155/2013/165057

Budi Hendrik R, Kriswandini Indah L, Iswara Aditya D. 2015. Antioxidant activity test on ambonese banana stem sap ( Musa parasidiaca Var. Sapientum). Dental Journal. 48(4): 188–192. doi: 10.20473/j.djmkg.v48.i4.p188-192

Du H, Liu W, Zhang M, Si C, Zhang X, Li B. 2019. Cellulose nanocrystals and cellulose nano fibrils based hydrogels for biomedical applications. Carbohydrate Polymers. 209(2019): 130–144. doi: 10.1016/j.carbpol.2019.01.020

Erawan Tatang S, Hidayat Rahmi A, Iskandar Johan. 2019. Etnobotanical study on banana in Karangwangi village. Jurnal Biodjati. 4(1): 112-125. doi: 10.15575/biodjati.v4i1.2954

Faradilla R H F, Lee G, Rawal A, Hutomo T, Stenzel M H, Arcot J. 2016. Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation. Cellulose. 23(5): 3023–3037. doi: 10.1007/s10570-016-1025-8

Hayati N, Rahman A, Chieng B W, Rahman N A. 2017. Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers. Journal Polymers. 588(9): 1–11. doi: 10.3390/polym9110588

Kementerian Pertanian Republik Indonesia. 2019. Statistika Pertanian. Jakarta: Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian Republik Indonesia

Lange F, Queiroz P, Henrique P, Ghiraldi C, Bueno R, Carlos F, Souza W, Anna C, Brienzo M. 2018. Industrial crops & products acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Industrial Crops & Products. 115(2018): 62–68. doi: 10.1016/j.indcrop.2018.02.024

Lehninger AL. 1993. Dasar-Dasar Biokimia. Jilid 1. Thenawidjaja M, Penerjemah; Jakarta: Erlangga. Terjemahan dari: Principles of Biochemistry

Li W, Zhang Y, Li J, Zhou Y, Li R, Zhou W. 2015. Characterization of cellulose from banana pseudo-stem by heterogeneous liquefaction. Carbohydrate Polymers. 132: 513-519. doi: 10.1016/j.carbpol.2015.06.066

Malinen RO, Sarkar MAR, Ibne F, Imam A, Khan MZH. 2014. Paper making from banana pseudo-stem : characterization and comparison paper making from banana pseudo-stem : characterization and comparison. Journal of Natural Fibers. 11(3): 199–211. doi: 10.1080/15440478.2013.874962

Meng F, Wang G, Du X, Wang Z, Xu S, Zhang Y. 2018. Preparation and characterization of cellulose nanofibers and nanocrystals from Liquefied Banana Pseudo-Stem Residue. Composites Part B: Engineering. 160: 341-347. doi: 10.1016/j.compositesb.2018.08.048

Mukwaya V, Yu W, Asad R A M, Yagoub H. 2015. An environmentally friendly method for the isolation of cellulose nano fibrils from banana rachis fibers. Textile Reaseearch Journal. 87(1): 81-90. doi: 10.1177/0040517515622155

Ndruru STCL, Wahyuningrum D, Bundjali B, Arcana IM. 2019. Green simple microwave-assisted extraction ( MAE ) of cellulose from theobroma Cacao L . ( TCL ) Husk. Conf. Series: Materials Science And Engineering. 541(1): 1-13.

Purwaningsih H. 2012. Rekayasa Biopolimer dari Limbah Pertanian Berbasis Selulusa dan Aplikasinya Sebagai Material Separator [Disertasi]. Bogor (ID): Institut Pertanian Bogor.

Raju SK, A Philomen, R Emilin. 2019. Shelf life assessment of banana pseudostem cutlet. International Journal of Engineering and Advanced Technology. 8(6): 210–214. doi: 10.35940/ijeat.F7910.088619

Ramu R, Shirahatti PS, Anilakumar KR, Nayakavadi S, Zameer F, Dhananjaya BL, Prasad MNN. 2017. Assessment of nutritional quality and global antioxidant response of banana (Musa Sp. CV . Nanjangud Rasa Bale) Pseudostem and flower. Pharmacogn. Res. 9(1): 74-83. doi: 10.4103/pr.pr

Rochana A, Dhalika T, Budiman A, Kamil KA. 2017. Nutritional value of a banana stem (Musa paradisiaca Val) of Anaerobic fermentation product supplemented with nitrogen, sulphur and phosphorus sources. Pakistan Journal of Nutrition. 16(10): 738-742. doi: 10.3923/pjn.2017.738.742

Segal L, Creely JJ, Martin AE, Conrad CM. 1959. An empirical method for estimating the degree of crystallinity of Native Cellulose using the X-Ray Diffractometer. Textile Research Journal 29 (10):786-794.

Sudiana IN, Mitsudo S, Susilowati PE, Ketut D, Arsana S, Widana M, Firihu M, Ngkoimani L, Aba La, Hasan E, Cahyono Edi, Sabchevski Svilen, Aripin Haji, Suastika KG. 2017. Fast microwave-assisted pretreatment for bioconversion of sawdust lignocellulose to glucose. Journal of Physics: Conference Series. 846(1): 012013.

Sulastri A, Rahmidar L. 2016. Fabrication of biomembrane from banana stem for lead removal. Indonesian Journal of Science and Technology. 1(1), 115–131.

Sun JX, Sun XF, Zhao H, Sun RC. 2004. Isolation and Characterization of cellulose from Sugarcane bagasse. J Polymer Degrab Stab. 84(2): 331-339. doi: 10.1016/j.polymdegradstab.2004.02.008

Sweygers N, Alewaters N, Dewil R, Appels L. 2018. Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural. Scientific Reports. 8:7719. doi: 10.1038/s41598-018-26107-y

Szyma M, Chyli M, Gdula K, Kozio A, Zdunek A. 2017. Isolation and characterization of cellulose from different fruit and vegetable pomaces. Journal of Polymers. 9(10): 495. doi: 10.3390/polym9100495

Taer E, Taslim R, Mustika WS, Kurniasih B, Afrianda A. 2018. Production of an activated carbon from a banana stem and its application as Electrode Materials for Supercapacitors. International Journal of Electrochemical Science. 13(9): 8428–8439. doi: 10.20964/2018.09.55

Tong CC, Hamzah NM. 1989. Delignification Pretreatment of Palmpress Fibres by Chemical Method. Pertanika. 12: 399-403.

Weyell P, Beekmann U, Küpper C, Dederichs M, Thamm J. 2019. Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydrate Polymers. 207: 1–10. doi: 10.1016/j.carbpol.2018.11.061

Xie J, Hse C, Hoop CFDe, Hu TQJ, Shupe TF. 2016. Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydrate Polymers. 151: 725–734. doi: 10.1016/j.carbpol.2016.06.011

Xie J, Hse C, Shupe TF, Qi J, Pan H. 2014. Liquefaction behaviors of bamboo residues in a glycerol-based solvent using microwave energy. Journal of Applied Polymer Science. 131(9): 1-8. doi: 10.1002/app.40207

Yadav M, Chiu F. 2019. Cellulose Nanocrystals reinforced Κ-Carrageenan based uv resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydrate Polymers. 211: 181–194. doi: 10.1016/j.carbpol.2019.01.114

Zhou L, Budarin V, Fan J, Sloan R, Macquarrie D. 2017. Efficient method of lignin isolation using microwave-assisted acidolysis and characterization of the residual lignin. ACS Sustainable Chemistry and Engineering. 5(5): 3768−3774. doi: 10.1021/acssuschemeng.6b02545


Full Text: PDF

DOI: 10.15408/jkv.v6i2.15962

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Inda Iliyin, henny purwaningsih, tun tedja irawadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.