VARFIS: A Hybrid Neuro-Fuzzy Model for Intelligent Microclimate Control in Black Soldier Fly Farming Systems

Authors

DOI:

https://doi.org/10.15408/jti.v18i2.46610

Keywords:

BSF, microclimate control, VARFIS, precision agriculture, sustainable insect farming

Abstract

Maintaining optimal microclimate conditions is essential for Black Soldier Fly (BSF) cultivation, yet traditional systems often struggle with dynamic environmental changes. This study proposes the Vector Autoregressive-Fuzzy Inference System (VARFIS), a hybrid model combining Vector Autoregression (VAR) and Adaptive Neuro-Fuzzy Inference System (ANFIS), to enhance temperature and humidity control in BSF insectariums. VARFIS adapts to uncertainty using probabilistic learning, achieving a 48% reduction in prediction error (MAPE = 1.36%) and high accuracy (R² = 0.9695), outperforming standalone VAR and ANFIS models. The model effectively captures daily climate fluctuations, improving larval growth efficiency and waste conversion. However, it remains limited in handling extreme events such as sudden heatwaves or humidity spikes, indicating the need for enhancements like adaptive fuzzy rule tuning and integration of physical constraints. VARFIS presents a scalable solution for intelligent microclimate management, supporting sustainable insect farming and circular economy goals. This work contributes to precision agriculture by offering data-driven tools for resilient environmental control.

References

[1] D. Purkayastha and S. Sarkar, “Performance evaluation of black soldier fly larvae fed on human faeces, food waste and their mixture,” J. Environ. Manage., vol. 326, p. 116727, Jan. 2023, doi: 10.1016/j.jenvman.2022.116727.

[2] P. Laksanawimol, P. Anukun, and A. Thancharoen, “Use of Different Dry Materials to Control the Moisture in a Black Soldier Fly (Hermetia Illucens) Rearing Substrate,” Peerj, vol. 12, p. e17129, 2024, doi: 10.7717/peerj.17129.

[3] J. C. F. Van, P. E. Tham, H. R. Lim, K. S. Khoo, J. Chang, and P. L. Show, “Integration of Internet-of-Things as Sustainable Smart Farming Technology for the Rearing of Black Soldier Fly to Mitigate Food Waste,” J. Taiwan Inst. Chem. Eng., vol. 137, p. 104235, 2022, doi: 10.1016/j.jtice.2022.104235.

[4] M. Barrett, S. Y. Chia, B. Fischer, and J. K. Tomberlin, “Welfare Considerations for Farming Black Soldier Flies, Hermetia Illucens (Diptera: Stratiomyidae): A Model for the Insects as Food and Feed Industry,” J. Insects Food Feed, vol. 9, no. 2, pp. 119–148, 2022, doi: 10.3920/jiff2022.0041.

[5] B. Li, M. Shahzad, H. Khan, M. Bashir, A. Ullah, and M. H. Siddique, “Sustainable Smart Agriculture Farming for Cotton Crop: A Fuzzy Logic Rule Based Methodology,” Sustainability, vol. 15, no. 18, p. 13874, 2023, doi: 10.3390/su151813874.

[6] S. A. Finecomess, G. Gebresenbet, and H. M. Alwan, “Utilizing an Internet of Things (IoT) Device, Intelligent Control Design, and Simulation for an Agricultural System,” Iot, vol. 5, no. 1, pp. 58–78, 2024, doi: 10.3390/iot5010004.

[7] F. Irwanto et al., “IoT and Fuzzy Logic Integration for Improved Substrate Environment Management in Mushroom Cultivation,” Smart Agric. Technol., vol. 7, p. 100427, 2024, doi: 10.1016/j.atech.2024.100427.

[8] Y. Tian, “Adaptive Control and Supply Chain Management of Intelligent Agricultural Greenhouse by Intelligent Fuzzy Auxiliary Cognitive System,” Expert Syst., vol. 41, no. 5, 2022, doi: 10.1111/exsy.13117.

[9] M. A. Vanegas, M. F. Arguello, dan D. M. Villegas, “A Systematic Review of Greenhouse Humidity Prediction and Control Models Using FIS,” Advances in Fuzzy Systems, vol. 2023, Article ID 3574621, pp. 1–15, 2023. DOI: 10.1155/2023/3574621.

[10] S. Aldin dan M. Sözer, “Comparing the accuracy of ANN and ANFIS models for predicting thermal data,” Journal of Construction Engineering, Management & Innovation, vol. 5, no. 1, pp. 15–24, 2022. DOI: 10.3390/jcemi-5-1-15.

[11] M. N. Nasir et al., “Optimization of fuzzy-based greenhouse climate control using Genetic Algorithm,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 12, no. 6, pp. 211–217, 2021. DOI: 10.14569/IJACSA.2021.0120626IF: 0.7 Q3 .

[12] M. Chandra, D. K. Jain, dan R. Malhotra, “Deep learning-based temperature and humidity prediction for agricultural applications using LSTM,” Computers and Electronics in Agriculture, vol. 195, p. 106847, 2022. DOI: 10.1016/j.compag.2022.106847IF: 7.7 Q1 .

[13] J. Kim, S. Park, dan K. Lee, “CNN-GRU hybrid deep learning model for environmental forecasting in precision farming,” Sensors, vol. 21, no. 6, pp. 1902–1918, 2021. DOI: 10.3390/s21061902.

[14] T. Nguyen, H. Tran, dan D. H. Do, “Kalman filter-based data fusion for real-time climate monitoring in greenhouse environments,” Journal of Intelligent & Robotic Systems, vol. 104, pp. 843–856, 2022. DOI: 10.1007/s10846-021-01403-x

[15] F. Yang, G. A. Shinkle, and M. Goudsmit, “The Efficacy of Organizational Control Interactions: External Environmental Uncertainty as a Critical Contingency,” J. Bus. Res., vol. 139, pp. 855–868, 2022, doi: 10.1016/j.jbusres.2021.10.026.

[16] N. Lafon, R. Fablet, and P. Naveau, “Uncertainty Quantification When Learning Dynamical Models and Solvers With Variational Methods,” J. Adv. Model. Earth Syst., vol. 15, no. 11, 2023, doi: 10.1029/2022ms003446.

[17] M. Blonsky, K. McKenna, J. Maguire, and T. L. Vincent, “Home Energy Management Under Realistic and Uncertain Conditions: A Comparison of Heuristic, Deterministic, and Stochastic Control Methods,” Appl. Energy, vol. 325, p. 119770, 2022, doi: 10.1016/j.apenergy.2022.119770.

[18] R. Pandit, D. Infield, and M. Santos, “Accounting for Environmental Conditions in Data-Driven Wind Turbine Power Models,” IEEE Trans. Sustain. Energy, vol. 14, no. 1, pp. 168–177, Jan. 2023, doi: 10.1109/TSTE.2022.3204453.

A. Albalawneh et al., “Evaluating the Influence of Nutrient-Rich Substrates on the Growth and Waste Reduction Efficiency of Black Soldier Fly Larvae,” Sustainability, vol. 16, no. 22, p. 9730, 2024, doi: 10.3390/su16229730.

B. G. Lopes, V. Wiklicky, E. Ermolaev, and C. Lalander, “Dynamics of Black Soldier Fly Larvae Composting – Impact of Substrate Properties and Rearing Conditions on Process Efficiency,” Waste Manag., vol. 172, pp. 25–32, 2023, doi: 10.1016/j.wasman.2023.08.045.

[19] S. Lievens et al., “Mutual Influence Between Polyvinyl Chloride (Micro)Plastics and Black Soldier Fly Larvae (Hermetia Illucens L.),” Sustainability, vol. 14, no. 19, p. 12109, 2022, doi: 10.3390/su141912109.

[20] C. Li, N. F. Addeo, T. W. Rusch, A. M. Tarone, and J. K. Tomberlin, “Black Soldier Fly (Diptera: Stratiomyidae) Larval Heat Generation and Management,” Insect Sci., vol. 30, no. 4, pp. 964–974, 2023, doi: 10.1111/1744-7917.13198.

[21] M. Muinde, J. Cheseto, and E. Tanga, “Optimizing black soldier fly larvae production: Effects of feed formulation and bed length using machine learning algorithms,” Journal of Cleaner Production, vol. 408, p. 137105, 2023. doi: 10.1016/j.jclepro.2023.137105.

[22] D. Van, N. Le, and P. Nguyen, “IoT-based monitoring system for black soldier fly farming: A case study in Vietnam,” Computers and Electronics in Agriculture, vol. 198, p. 107071, 2022. doi: 10.1016/j.compag.2022.107071.

[23] [M. T. Siddiqui, M. A. Hanif, and H. A. Khan, “The role of precision agriculture in enhancing BSF-based bioconversion systems: A review,” Journal of Environmental Management, vol. 323, p. 116284, 2022. doi: 10.1016/j.jenvman.2022.116284.

Downloads

Published

2025-10-30

How to Cite

VARFIS: A Hybrid Neuro-Fuzzy Model for Intelligent Microclimate Control in Black Soldier Fly Farming Systems. (2025). JURNAL TEKNIK INFORMATIKA, 18(2), 281-291. https://doi.org/10.15408/jti.v18i2.46610