DETEKSI KEMATANGAN TANDAN BUAH SEGAR (TBS) KELAPA SAWIT BERDASARKAN KOMPOSISI WARNA MENGGUNAKAN DEEP LEARNING

Authors

  • Muhammad Rifqi Bina Nusantara University
  • Suharjito Suharjito Bina Nusantara University

DOI:

https://doi.org/10.15408/jti.v14i2.23295

Keywords:

Maturity, Palm oil, EfficientNet, Optimizer

Abstract

Classification of oil palm fresh fruit bunch (FFB) based on maturity is very important for estimating oil content. Traditional methods using human vision to observe color changes during ripening and counting the number of fruits that fall from FFB are not effective. Research for neural architectures to design new network bases and improve them resulted in a set of models called EfficientNet. The most important function is the optimizer. This function repeatedly increases the parameters to reduce loss. In this study, the EfficientNetB0 and B1 models were developed to detect oil palm maturity into 6 classes, Raw, Ripe, Overripe, Underripe, abnormal, and empty bunch using optimizer RMSprop and SGD. From the research results, obtained the highest accuracy using the RMSprop optimizer of 0.9955 using the EfficientNetB0 model and 0.9949 using the EfficientNetB1 model. While using the SGD optimizer, the accuracy achieved is 0.918 using the EfficientNetB0 model and 0.9079 using the EfficientNetB1 model

References

I. Pahan, Panduan Teknis Budidaya Kelapa Sawit Untuk Praktisi Perkebunan, I. Jakart: Penebar Swadaya, 2015.

S. ITN, 58 Kiat Meningkatkan Produktivitas dan Mutu Kelapa Sawit, I. Jakarta: Penebar Swadaya, 2008.

A. W. Krisdiarto, L. Sutiarso, and K. H. Widodo, “Optimasi Kualitas Tandan Buah Segar Kelapa Sawit dalam Proses Panen-Angkut Menggunakan Model Dinamis,” Agritech, vol. 37, no. 1, p. 102, 2017, doi: 10.22146/agritech.17015.

Z. Ibrahim, N. Sabri, and D. Isa, “Palm oil fresh fruit bunch ripeness grading recognition using convolutional neural network,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 3–2, pp. 109–113, 2018.

M. Shiddiq, Fitmawati, R. Anjasmara, N. Sari, and Hefniati, “Ripeness detection simulation of oil palm fruit bunches using laser-based imaging system,” AIP Conf. Proc., vol. 1801, no. January 2017, 2017, doi: 10.1063/1.4973101.

H. Herman, A. Susanto, T. W. Cenggoro, S. Suharjito, and B. Pardamean, “Oil Palm Fruit Image Ripeness Classification with Computer Vision using Deep Learning and Visual Attention,” J. Telecommun. Electron. Comput. Eng., vol. 12, no. 2, pp. 21–27, 2020.

I. Bonet, F. Caraffini, A. Pena, A. Puerta, and M. Gongora, “Oil Palm Detection via Deep Transfer Learning,” 2020 IEEE Congr. Evol. Comput. CEC 2020 - Conf. Proc., 2020, doi: 10.1109/CEC48606.2020.9185838.

L. T. Duong, P. T. Nguyen, C. Di Sipio, and D. Di Ruscio, “Automated fruit recognition using EfficientNet and MixNet,” Comput. Electron. Agric., vol. 171, no. February, p. 105326, 2020, doi: 10.1016/j.compag.2020.105326.

M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.

R. V. Kumar Reddy, B. Srinivasa Rao, and K. P. Raju, “Handwritten Hindi Digits Recognition Using Convolutional Neural Network with RMSprop Optimization,” Proc. 2nd Int. Conf. Intell. Comput. Control Syst. ICICCS 2018, no. Iciccs, pp. 45–51, 2019, doi: 10.1109/ICCONS.2018.8662969.

I. Joshi, M. Desai, S. Bookseller, R. Mohod, C. N. Paunwala, and B. Vaidya, “Performance of Different Optimizers,” 2019 10th Int. Conf. Comput. Commun. Netw. Technol., pp. 1–7, 2019.

M. K. Shabdin, A. R. M. Shariff, M. N. A. Johari, N. K. Saat, and Z. Abbas, “A study on the oil palm fresh fruit bunch (FFB) ripeness detection by using Hue, Saturation and Intensity (HSI) approach,” IOP Conf. Ser. Earth Environ. Sci., vol. 37, no. 1, 2016, doi: 10.1088/1755-1315/37/1/012039.

N. Sabri, Z. Ibrahim, S. Syahlan, N. Jamil, and N. N. A. Mangshor, “Palm oil fresh fruit bunch ripeness grading identification using color features,” J. Fundam. Appl. Sci., vol. 9, no. 4S, p. 563, 2018, doi: 10.4314/jfas.v9i4s.32.

S. A. Ghazali, H. Selamat, Z. Omar, and R. Yusof, “Image Analysis Techniques for Ripeness Detection of Palm Oil Fresh Fruit Bunches,” Elektr. J. Electr. Eng., vol. 18, no. 3, pp. 57–62, 2019, doi: 10.11113/elektrika.v18n3.192.

A. Septiarini, H. Hamdani, H. R. Hatta, and A. A. Kasim, “Image-based processing for ripeness classification of oil palm fruit,” Proceeding - 2019 5th Int. Conf. Sci. Inf. Technol. Embrac. Ind. 4.0 Towar. Innov. Cyber Phys. Syst. ICSITech 2019, pp. 23–26, 2019, doi: 10.1109/ICSITech46713.2019.8987575.

N. F. Sulaiman, O. Pauline, L. W. Kiow, L. K. Huong, and G. S. Fong, “CCAM Communications in Computational and Applied Automatic Grading System for Oil Palm Fruit Ripeness,” Commun. Comput. Appl. Math., vol. 2, no. 1, pp. 7–11, 2020, [Online]. Available: http://fazpublishing.com/ccam/index.php/ccam/article/view/32.

E. F. Himmah, M. Widyaningsih, and M. Maysaroh, “Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering,” J. Sains dan Inform., vol. 6, no. 2, pp. 193–202, 2020, doi: 10.34128/jsi.v6i2.242.

A. W. Setiawan and O. E. Prasetya, “Palm Oil Fresh Fruit Bunch Grading System Using Multispectral Image Analysis in HSV,” 2020 IEEE Int. Conf. Informatics, IoT, Enabling Technol. ICIoT 2020, pp. 85–88, 2020, doi: 10.1109/ICIoT48696.2020.9089431.

G. N. Elwirehardja, J. S. Prayoga, and Suharjito, “Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches,” Comput. Electron. Agric., vol. 188, no. March, p. 106359, 2021, doi: 10.1016/j.compag.2021.106359.

Downloads

Published

2021-10-30

How to Cite

DETEKSI KEMATANGAN TANDAN BUAH SEGAR (TBS) KELAPA SAWIT BERDASARKAN KOMPOSISI WARNA MENGGUNAKAN DEEP LEARNING. (2021). JURNAL TEKNIK INFORMATIKA, 14(2), 125-134. https://doi.org/10.15408/jti.v14i2.23295