QSAR Analysis and ADMET Prediction of Tamoxifen Derivatives Using LFER Hansch Model
DOI:
https://doi.org/10.15408/pbsj.v7i2.49191Keywords:
ADMET, breast cancer, drug design, QSAAbstract
Tamoxifen is a pharmaceutical compound that can be widely used in the therapeutic regimen for breast cancer, particularly for postmenopausal women. Nevertheless, this clinical efficacy is frequently diminished and limited due to the emergence of drug resistance and heterogeneous therapeutic impacts with different degrees of severity. This has led to the discovery of structurally connected compounds that are more effective than tamoxifen. The current research study describes QSAR modeling and predicting the ADMET parameters of tamoxifen derivatives for the treatment of breast cancer. SPSS software was used for analysis of multiple linear regression and found the pIC50 = -0.059CLogP + 0.759LUMO - 0.011MR + 3.444. Model validation yielded R = 0.921, R² = 0.848 and Q² = 0.651, which suggests high predictability. The most important characteristic being LUMO energy, the second most important descriptor was followed by CLogP and MR. The ADMET prediction showed high intestinal absorption values (HIA > 90%) and satisfactory permeability over skin. Water solubility was impaired but also low. The metabolism of compounds seemed to predominantly occur via CYP3A4 enzyme. However, LD50 values were of acceptable size, ranging from 324 to 3000 mg/kg (within the safety profile). The findings of this work will thus show help in designing anticancer tamoxifen derivative products with the least toxicity. Additional structural optimization is advocated to achieve maximal therapeutic benefit and least toxicity.
References
Arba, M., Tjahjono, D. H., Farmasi, F. and Oleo, U. H. (2018) 'Hubungan Kuantitatif Struktur-Aktivitas (HKSA) dan Penambatan Molekul Senyawa Turunan Benzamida sebagai Inhibitor Alosterik Mitogen Enhanced Kinase (MEK)', Jurnal Kimia VALENSI, 4(1), pp. 42–51.
Banerjee, P., Kemmler, E., Dunkel, M. and Preissner, R., 2024. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(W1), pp.W513-W520.
Brauch, H. and Jordan, V. C. (2009) ‘Targeting of tamoxifen to enhance antitumour action for the treatment and prevention of breast cancer: The “personalised” approach?’, European Journal of Cancer, 45(13), pp. 2274–2283. doi: 10.1016/j.ejca.2009.05.032.
Brøsen, K. and Naranjo, C.A., 2001. Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. European Neuropsychopharmacology, 11(4), pp.275-283.
Chander, S., Tang, C.R., Al-Maqtari, H.M., Jamalis, J., Penta, A., Hadda, T.B., et al., 2017. Synthesis and study of anti-HIV-1 RT activity of 5-benzoyl-4-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin2-one derivatives. Bioorganic Chemistry, 72, pp.74-79.
Chen, Q., et al. (2020) 'Targeting tamoxifen metabolites in the treatment of breast cancer', Journal of Medicinal Chemistry, 63(5), pp. 2320–2330. doi: 10.1021/jm20200767.
Chitturi, S. and Farrell, G.C. (2013) ‘Estrogen receptor antagonists: adverse effects of hormones and hormone antagonists on the liver’, in Kaplowitz, N. and DeLeve, L.D. (eds.) Drug‑Induced Liver Disease. 3rd edn. Elsevier, pp. 610–612.
Frimayanti, N., Yam, M. L., Lee, H. B., Othman, R., Zain, S. M. & Rahman, N. A., 2011. Validation of Quantitative Structure-Activity Relationship (QSAR) Model for Photosensitizer Activity Prediction. International Journal of Molecular Sciences, 12(12), pp. 8626–8644.
Hadaji, N., Kenouche, S. & Saleh, B. A., 2018. QSAR modeling, docking, ADME and reactivity of indazole derivatives as antagonizes of estrogen receptor alpha (ER-α) positive in breast cancer. Journal of Molecular Structure, 1217, pp. 128442.
Krihariyani, D., Sasongkowati, R. and Haryanto, E. (2020) 'Studi In Siliko Sifat Farmakokinetik, Toksisitas, dan Aktivitas Imunomodulator Brazilein Kayu Secang Terhadap Enzim 3-Chymotrypsin-Like Cysteine Protease Coronavirus', Journal of Indonesian Medical Laboratory and Science, 1(1), pp. 76–90.
Lipinski, C. A. (2011) 'ADMET Screen', in Schwab, M. (ed.) Encyclopedia of Cancer. Springer Berlin Heidelberg, pp. 80–84. doi: 10.1007/978-3-642-16483-5_114.
Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. (2001) ‘Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings’, Advanced Drug Delivery Reviews, 46(1–3), pp. 3–26.
Male, Y., Sutapa, I. W. & Pusung, Y. A. D., 2018. Prediksi potensi antikanker senyawa turunan xanthon menggunakan hubungan kuantitatif struktur dan aktivitas (HKSA). CHEMISTRY PROGRESS, 11(1), pp. 28–37.
Megawati, S.D., Ekowati, J. and Siswandono, S., 2023. Quantitative Structure-Activity Relationship (QSAR) of N-Benzoyl-N’-Naphtylthiourea Derivative Compounds by in Silico as Anticancer Through Inhibition of VEGFR2 Receptors. ICGT 2022, pp.137-148.
Mulyani, F. and Nasution, H. (2023) 'Application of tamoxifen in breast cancer treatment', Jurnal Farmasi UMMAT. Available at: https://journal.ummat.ac.id/index.php/farmasi/article/view/22563.
Nindita, D. L. and Sanjaya, I. G. M. (2014) modeling hubungan kuantitatif struktur dan aktivitas (hksa) pinocembrin dan turunannya sebagai anti kanker, UNESA Journal of Chemistry, 3(2), pp. 26-34.
Nystrom, M. P. & Sanchez, M., 2011. Biomedical QSAR and its application. In: M. R. Q. Atkinson & W. E. S. Wright, eds. Encyclopedia of Biopharmaceutics. Springer.
Pires, D. E. V., Blundell, T. L., and Ascher, D. B. (2015) 'pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures', Journal of Medicinal Chemistry, 58(9), pp. 4066–4072. doi: 10.1021/acs.jmedchem.5b00104.
Putra, G. S., Sulistyowaty, M. I., Yuniarta, T. A., Yahmin, Y., Sumari, S., Saechan, C. & Yamauchi, T., 2023. QSAR study of benzylidene hydrazine benzamides derivatives with in vitro anticancer activity against human lung cancer cell line A459. Journal of Pharmacy & Pharmacognosy Research, 11(6), pp. 1123–1136.
Shagufta, and Ahmad, I. (2018) 'Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives', European Journal of Medicinal Chemistry, 143, pp. 515–531. doi: 10.1016/j.ejmech.2017.11.056.
Wang, Z., Clark, J. and Ma’ayan, A. (2016) ‘Drug‑induced liver injury prediction using machine learning’, Chemical Research in Toxicology, 29(4), pp. 571–581.
Widiyanti, H., Banon, C. and Adfa, M., 2021. Analisis Hubungan Kuantitatif Struktur terhadap Aktivitas Turunan Senyawa Cubebin sebagai Antikanker dengan Metode Recife Model 1 (RM1). Bencoolen Journal of Pharmacy, 1(1), pp.46-58.
Xiao, Y. et al. (2024) ‘ADMETlab 3.0: an updated comprehensive online ADMET prediction platform’, Nucleic Acids Research, 52(W1), W422–W430.
Zekri, A., Harkati, D., Kenouche, S., and Saleh, B. A. (2020) 'QSAR modeling, docking, ADME and reactivity of indazole derivatives as antagonizes of estrogen receptor alpha (ER-α) positive in breast cancer', Journal of Molecular Structure, 1217, p. 128442. doi: 10.1016/j.molstruc.2020.128442.
Yuan, H. et al. (2023) ‘In silico study of the “magic chloro” effect: electronic properties and bioactivities’, RSC Advances, 13(45), pp. 32156–32167.
Zhang, J., Lai, N. and Wei, D. et al. (2023) ‘Molecular docking and DFT studies on ERα antagonists: implicating frontier molecular orbitals in binding’, Journal of Molecular Modeling, 29(9), p. 253.
Zhang, T.-T., Jia, J.-F. and Wu, H.-S. (2010) 'Substituent and Solvent Effects on Electronic Structure and Spectral Property of ReCl(CO)3 (N∧N) (N∧N = Glyoxime)', The Journal of Physical Chemistry A, 114(46), pp. 12251–12257.
Zhao, F. et al. (2014) ‘The effect and mechanism of tamoxifen‑induced hepatocyte steatosis in vitro’, International Journal of Molecular Sciences, 15(3), pp. 4019–4030.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Andzar Fikranus Shofa, Rawwdha Luthfi Nur Muhammad, Norma Adityaningsih Prameswari, Sendi Handika Putra, Aisyah Afifah Setiawan, Dhia Salsabila Rizki

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.