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Abstract: Tamoxifen is a pharmaceutical compound that can be widely used in the therapeutic regimen for breast 

cancer, particularly for postmenopausal women. Nevertheless, this clinical efficacy is frequently diminished and 

limited due to the emergence of drug resistance and heterogeneous therapeutic impacts with different degrees of 

severity. This has led to the discovery of structurally connected compounds that are more effective than tamoxifen. 

The current research study describes QSAR modeling and predicting the ADMET parameters of tamoxifen 

derivatives for the treatment of breast cancer. SPSS software was used for analysis of multiple linear regression 

and found the pIC50 = -0.059CLogP + 0.759LUMO - 0.011MR + 3.444. Model validation yielded R = 0.921, R² 

= 0.848 and Q² = 0.651, which suggests high predictability. The most important characteristic being LUMO 

energy, the second most important descriptor was followed by CLogP and MR. The ADMET prediction showed 

high intestinal absorption values (HIA > 90%) and satisfactory permeability over skin. Water solubility was 

impaired but also low. The metabolism of compounds seemed to predominantly occur via CYP3A4 enzyme. 

However, LD50 values were of acceptable size, ranging from 324 to 3000 mg/kg (within the safety profile). The 

findings of this work will thus show help in designing anticancer tamoxifen derivative products with the least 

toxicity. Additional structural optimization is advocated to achieve maximal therapeutic benefit and least toxicity. 
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1. INTRODUCTION 
 

Breast cancer remains one of the most prevalent malignancies affecting women globally, accounting 

for a significant proportion of cancer-related morbidity and mortality (Mulyani & Nasution, 2023). 

Despite advancements in early detection and therapeutic interventions, resistance to conventional 

treatment options, including chemotherapy and hormone therapy, continues to pose a critical challenge 

(Chen et al., 2020). Among the therapeutic agents used for breast cancer, Tamoxifen, a selective 

estrogen receptor modulator (SERM), has been extensively employed due to its ability to modulate 

estrogen receptor activity (Shagufta & Ahmad, 2018). However, variations in individual metabolic 

response to Tamoxifen, primarily influenced by the CYP2D6 enzyme, result in diverse therapeutic 

outcomes (Chen et al., 2020). The need to optimize the therapeutic efficacy of Tamoxifen has driven 

researchers to explore its structural derivatives, aiming to enhance anti-cancer potency while 

minimizing adverse effects. 
 

Quantitative Structure-Activity Relationship (QSAR) is considered to be a key method in predicting 

chemical compounds biological activities from molecular descriptors (Zekri et al., 2020). The 

computational approach can be used to predict potential drug candidates initially at the early stage of 

drug discovery, thus minimizing the time- and resource-consuming experimental validation process 

(Lipinski, 2011). QSAR is used for screening Tamoxifen and its derivatives to elucidate correlation 

between chemical structure and biological activity and guide synthesis of more effective analogs 

(Shagufta & Ahmad, 2018). However, the accuracy of the QSAR models is affected by the quality and 

size of training data and complexity of biological endpoints, which may result in conflicting predictions 
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from different QSAR methods (Zekri et al., 2020). As a solution to these limitations, several validation 

strategies such as internal validation, external validation, and Y-randomization are suggested to make 

the QSAR models more robust and powerful for predictive purposes (Lipinski, 2011). 
 

Although QSAR models can be of great importance, they do face many challenges like the inherent 

variation of biological systems, especially in predicting complex endpoints like pharmacokinetics-

toxicity, and offer a comprehensive strategy to evaluate the safety and efficacy of Tamoxifen derivatives 

(Zekri et al., 2020). As we discussed earlier, QSAR was utilized for dose optimization for Tamoxifen 

and its analogs (such as Z-endoxifen), a metabolite of this compound, which also plays a key role in 

therapeutics (Chen et al., 2020). It has been found that the efficacy of Tamoxifen may be highly 

dependent on the patient's genetic polymorphism in CYP2D6, and treatment must therefore be adjusted 

according to dose (Shagufta & Ahmad, 2018). Moreover, the hepatotoxic potential and mutagenicity of 

Tamoxifen derivatives require meticulous characterization of their ADMET (Absorption, Distribution, 

Metabolism, Excretion, and Toxicity) profiles, which is where QSAR modeling is useful (Lipinski, 

2011). 
 

Previous studies have explored the use of various Tamoxifen derivatives, including Raloxifene, 

Droloxifene, and Idoxifene, which have shown potential anti-cancer activities with different 

pharmacological profiles (Shagufta & Ahmad, 2018). These derivatives are often evaluated using 

QSAR techniques to understand their interaction with estrogen receptors and predict their 

pharmacokinetic behavior. However, conflicting results regarding their efficacy and toxicity profiles 

persist, primarily due to differences in experimental conditions, computational methods, and sample 

sizes (Lipinski, 2011). Addressing these discrepancies requires further research, especially in validating 

QSAR models across diverse datasets and experimental frameworks to achieve more consistent and 

reliable predictions (Zekri et al., 2020). 
 

Given these research gaps, this study aims to further explore the potential of QSAR modeling in 

predicting the pharmacokinetic and toxicity profiles of Tamoxifen derivatives. By analyzing a broader 

set of molecular descriptors and integrating comprehensive ADMET predictions, this research seeks to 

identify novel derivatives with enhanced therapeutic potential and minimized adverse effects. The 

novelty of this study lies in its approach to combine computational modeling with extensive dataset 

validation, aiming to refine the predictive power of QSAR models and contribute to the advancement 

of precision medicine in breast cancer treatment to provide a more accurate, efficient, and personalized 

approach to breast cancer therapy through the development of optimized Tamoxifen analogs. 
 

2. MATERIAL AND METHODS  
 

2.1 Materials 
 

Table 1.  Chemical Structures and IC₅₀ Values of Tamoxifen and Its Derivatives Againts Breast Cancer 

No Compoud Chemical Formula IC50 (µM) 

1 Tamoxifen C26H29NO 20.5 

2 Raloxifene C28H27NO4S 13.7 

3 Tamoxifene A C23H23NO 16.9 

4 Tamoxifene B C27H29NO3 2.9 

5 Idoxifene C28H30INO 6.5 

6 Toremifene C26H28ClNO 18.9 

7 Ospemifene C24H23ClO2 12.6 

8 4-hydroxy tamoxifene C26H29NO2 11.3 

 

9 Lasofoxifene C28H31NO2 0.00288 

10 Endoxifen C25H27NO2 0.675 

 

The research utilized the following tools and materials: a laptop with an Asus brand, a Windows 10 

operating system, a 64-bit AMD Quad Core A8-7410 processor, a CPU @ 2.5 GHz, and 4.00 GB of 
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RAM. The software employed included Chem Draw Ultra 12.0 and Chem Bio 3D Ultra 

(CambridgeSoft), as well as IBM SPSS Statistics 27.0.1. The data on tamoxifen-derived compounds 

and the IC50 values of breast anticancer activity were obtained from research conducted by Brauch and 

Jordan (2009), as shown in Table 1 . 
 

2.2 Methods 
 

a. Research Design  
 

The study performs a computational and in silico study to characterize structure-activity relationships 

and pharmacokinetic properties of tamoxifen derivatives. Computational methods are favored due to 

their cost-efficiency, reduced experimental hazards, and the ability to screen multiple compounds 

simultaneously (Zekri et al., 2020). This design is exploratory in nature by correlating molecular 

descriptors to biological activities. The QSAR analysis follows a supervised learning approach through 

multilinear regression (MLR) which is suitable for the analysis of complex data involving multiple 

predictors (Frimayanti et al., 2011). ADMET predictions necessary to understand drug-like properties 

were performed with pkCSM and Protox III and were accessible through their respective online 

platforms (Pires et al., 2015). 
 

b. Data Collection 
 

The first phase of the study encompassed collecting applicable chemical and biological information 

from PubChem, a trusted, open-access chemical database. A text notation of chemical structures known 

as SMILES was obtained for each tamoxifen derivative. These SMILES notations were entered into 

ChemDraw and Chem3D to compute molecular descriptors: lipophilicity (CLogP), electronic properties 

(LUMO and HOMO), steric parameters (molecular refractivity, MR), polar surface area (TPSA). 

Furthermore, pkCSM was also used for ADMET property prediction (absorption, distribution, 

metabolism, excretion, and toxicity) (Pires et al., 2015). The retrieved data were collated into organized 

datasets for statistical analysis to ensure data integrity and completeness. Descriptors were standardized 

and normalized to mitigate bias caused by differences in scale in order to enhance reliability of the data. 

Data preprocessing also took into account missing values, the detection of outliers, and the consistency 

of descriptor calculation. The descriptors with high multicollinearity (VIF > 5) were removed in order 

to avoid redundancy and improve interpretation of models (Nystrom & Sanchez, 2011). 
 

c. QSAR Model Development 
 

The QSAR modeling process follows these steps: (1) data acquisition and preprocessing, (2) descriptor 

calculation using ChemDraw and Chem3D, (3) statistical analysis using SPSS, and (4) model validation 

through internal and external techniques. Internal validation employs leave-one-out (LOO) cross-

validation, while external validation uses independent datasets (Frimayanti et al., 2011; Putra et al., 

2023). The evaluation parameters include correlation coefficient (R), determination coefficient (R²), 

and cross-validated R² (Q²), adhering to the threshold values specified in previous QSAR studies.. 
 

d. ADMET Predictions 
 

ADMET predictions are critical for assessing the pharmacokinetic properties of the compounds. 

Absorption metrics include solubility, Caco-2 permeability, human intestinal absorption (HIA), and 

skin permeability. Distribution is assessed via VDss (volume of distribution) and BBB (blood-brain 

barrier) permeability. Metabolism focuses on enzyme interaction, specifically with CYP450 enzymes 

(CYP2D6 and CYP3A4). Excretion evaluates total clearance and renal OCT2 substrates, while toxicity 

considers hepatotoxicity and carcinogenicity using Protox III (Pires et al., 2015). 
 

e. Statistical Analysis 
 

Statistical analysis was performed to measure the relationships between the molecular characteristics 

and biological activity of tamoxifen derivatives in this study. Multilinear regression (MLR) and 

Pearson's correlation were used to conduct this analysis (using IBM SPSS Statistics 25). MLR 
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performed well in estimating how multiple independent variables contributed to a dependent variable, 

allowing a comprehensive understanding of how molecular descriptors influence biological activity 

(Nystrom & Sanchez, 2011). To examine the strength and direction of the relationship across molecular 

descriptors, Pearson's correlation was employed. A correlation matrix was created to identify the linear 

relationships among the variables, ensuring that multicollinearity did not influence the regression 

model. The degree of multicollinearity was determined with the variance inflation factor (VIF); a VIF 

value above 5 indicates multicollinearity issues that potentially disrupt the model's accuracy (Zekri et 

al., 2020). The significance parameters of predictor variables were evaluated by p-values (<0.05) 

indicating that only significant descriptors were included. Using coefficient of determination (R²) and 

adjusted R² to model multiple predictors, goodness of fit of the regression model was analyzed. Finally, 

standardized coefficients (β) were examined in order to understand the relative importance of each 

descriptor in predicting biological activity. Residual analysis including inspection of standardized 

residuals and Cook's distance was performed for potential outliers or influential data points. 
 

f. Model Validation 
 

Model validation is crucial to ensure the credibility of QSAR predictions. Internal validation through 

LOO cross-validation was used to evaluate the model's stability. Additionally, external validation was 

performed using independent datasets to verify the model's predictability. The criteria for model 

acceptability included R² > 0.6, Q² > 0.5, and F-statistics surpassing the threshold (Hadaji et al., 2018). 
 

3. RESULTS AND DISCUSSION  
 

The QSAR analysis was performed on ten tamoxifen derivatives to establish the correlation between 

molecular descriptors and anticancer activity against breast cancer. The QSAR model was constructed 

using pIC50 as the dependent variable, while descriptors such as lipophilicity (CLogP, LogS), electronic 

parameters (HOMO, LUMO, pKa, tPSA), and steric factors (MR, MW, MV) were considered as 

independent variables (Table 2) 
 

Table 2. Molecular Descriptors of Lipophilic, Electronic, and Steric Properties of Selected Tamoxifen Derivatives 

 

To refine the QSAR model, a Pearson correlation analysis was performed (Table 3). A significant 

positive correlation between LUMO and pIC50 (r = 0.916) indicates that molecules with higher LUMO 

energy exhibit increased anticancer potency. Conversely, CLogP exhibited a weak negative correlation 

(r = -0.208), suggesting that excessive lipophilicity could reduce biological activity. The MR descriptor 

also showed a minor positive correlation (r = 0.169), indicating its minor influence on potency. 
 

Among the molecular descriptors, LUMO (Lowest Unoccupied Molecular Orbital) demonstrates the 

strongest positive correlation (0.916) with pIC50, emphasizing its significant role in predicting 

anticancer activity. A higher LUMO value suggests increased electron affinity, enhancing the potential 

for nucleophilic attacks, which is critical for interaction with estrogen receptors (Zhang et al., 2010). 

This supports the hypothesis that tamoxifen derivatives with enhanced LUMO energy may achieve 

stronger binding to receptor sites, thus exhibiting superior anticancer activity (Chen et al., 2020). 

No Compoud pIC50 CLogP LogS HOMO LUMO pKa tPSA MR MW MV 

1 Tamoxifen -1.31 5.77 -7.05 -9.48 -4.79 5.77 12.47 119.72 371.51 168.65 

2 Raloxifene -1.13 5.05 -6.88 -7.08 -3.60 8.40 98.24 141.21 473.58 202.40 

3 Tamoxifene A -1.23 4.77 -5.91 -9.97 -4.56 9.94 35.35 105.11 329.43 149.13 

4 Tamoxifene B -0.46 5.09 -6.81 -8.82 -4.43 9.22 69.56 127.64 414.52 177.07 

5 Idoxifene -0.81 6.71 -8.83 -9.33 -4.30 8.99 12.47 143.85 523.45 199.63 

6 Toremifene -1.28 5.98 -7.01 -9.48 -4.43 9.23 12.47 124.52 405.96 178.95 

7 Ospemifene -1.1 5.41 -6.43 -9.96 -4.42 14.18 29.46 113.17 378.89 165.28 

8 
4-hydroxy 

tamoxifene 
-1.05 5.36 -6.74 -9.48 -4.19 9.17 32.70 121.75 387.51 173.44 

9 Lasofoxifene 2.54 5.2 -6.79 -9.33 0.27 9.40 32.70 130.09 413.55 184.85 

10 Endoxifen 0.17 5.09 -6.67 -9.99 -4.21 9.17 41.49 116.84 373.49 166.87 
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Table 3. Pearson Correlation Matrix between pIC₅₀ and Selected Physicochemical and Electronic Descriptors of 

Tamoxifen Derivatives. 

QSAR Descriptor pIC50 CLogP LogS HOMO LUMO pKa tPSA MR MW MV 

pIC50 1          

CLogP -0.208 1         

LogS 0.023 -0.883 1        

HOMO -0.072 -0.113 -0.167 1       

LUMO 0.916 -0.189 0.037 0.142 1      

pKa 0.024 -0.168 0.29 -0.311 0.022 1     

tPSA 0.025 -0.618 0.286 0.781 0.09 -0.01 1    

MR 0.169 0.493 -0.77 0.704 0.282 -0.318 0.285 1   

MW 0.055 0.603 -0.848 0.588 0.149 -0.147 0.191 0.96 1  

MV 0.164 0.462 -0.714 0.732 0.309 -0.246 0.312 0.987 0.945 1 
 

Conversely, the negative correlation of CLogP (-0.208) suggests that excessive lipophilicity may 

compromise drug bioavailability and increase toxicity risks. An optimal balance of hydrophilicity and 

lipophilicity is crucial for effective membrane permeability and pharmacokinetic performance 

(Megawati et al., 2023). These findings are consistent with previous research indicating that over-

lipophilicity often leads to poor pharmacokinetics and off-target interactions, potentially elevating 

toxicity (Mulyani & Nasution, 2023). Additionally, MR (Molar Refractivity) demonstrates a weaker 

correlation (0.169), indicating a less prominent impact of steric hindrance in influencing biological 

activity. However, MR's contribution cannot be disregarded, as slight modifications in steric properties 

can still impact receptor binding and overall molecular stability (Putra et al., 2023). 
 

The QSAR model was validated using the Leave-One-Out (LOO) cross-validation technique, yielding 

a Q² value of 0.651, meeting the acceptance threshold (Q² > 0.5). Additionally, the statistical 

significance of the model was verified with an F-value of 11.137, surpassing the F-critical value of 4.45 

at a 99% confidence level. The strong correlation and predictive reliability of the model confirm its 

applicability in designing more effective tamoxifen derivatives. 
 

The validated QSAR equation obtained was: 
 

pIC50 = -0.059CLogP + 0.759LUMO - 0.011MR + 3.444 

n = 10, r = 0.921, 𝑅2 = 0.848, F= 11.137, 𝑄2 = 0.651 
 

The validation through the Leave-One-Out (LOO) cross-validation method, yielding Q² = 0.651, 

demonstrates the model's reliability while acknowledging its limitations. The moderate Q² value implies 

that other influential factors, potentially unaddressed molecular descriptors or complex biological 

interactions, may contribute to the variations in anticancer activity. These findings align with existing 

literature highlighting the intricate nature of QSAR modeling for complex biological responses 

(Frimayanti et al., 2011; Male et al., 2019). Future studies should consider integrating additional 

descriptors, such as quantum chemical or three-dimensional structural descriptors, to refine predictive 

power. 
 

The model showed strong statistical validation with n = 10, r = 0.921, R² = 0.848, F = 11.137, and Q² = 

0.651, indicating high predictive power and stability. Among the descriptors, LUMO energy 

demonstrated the highest correlation with pIC50 (r = 0.916), followed by CLogP (-0.208) and MR 

(0.169). indicates the complex interplay between lipophilicity (CLogP), electronic properties (LUMO), 

and steric factors (MR) in determining biological activity. The correlation coefficient (R² = 0.848) 

suggests a robust model, capable of predicting the anticancer efficacy of tamoxifen derivatives with 

considerable accuracy (Arba et al., 2018). These findings suggest that increasing LUMO energy while 

reducing CLogP and MR values may enhance anticancer activity. 
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The LUMO energy has the largest positive coefficient, indicating that the electronic features of the 

molecules are central in determining inhibitory potency. Higher LUMO energy, reflecting a lower 

tendency of the molecule to accept electrons, may lead to enhanced specificity and stability in the 

ligand–receptor interactions, especially in targets where charge transfer or electrostatic 

complementarity is crucial. This is in line with earlier QSAR and quantum chemical analyses indicating 

that the frontier molecular orbitals, particularly LUMO, are a major determinant in the ligand reactivity 

and binding affinity in the enzyme–inhibitor and receptor–ligand systems (Parr & Yang, 1989; 

Cherkasov et al., 2014).  
 

The CLogP reflects the lipophilicity and enters activity negatively, as evidenced from the negative 

regression coefficient. Lipophilicity is traditionally a major driver of membrane permeability and target 

engagement; however, excessive hydrophobicity can be deleterious by promoting nonspecific 

interactions with either biological membranes or plasma proteins, ultimately decreasing the effective 

concentration of free ligand at the target site. This negative influence of CLogP in this model suggests 

that a ligand with moderate or low hydrophobic character may be preferred in the binding site of the 

biological target, possibly because of the presence of polar or charged amino acid residues within the 

binding pocket. This behavior is in good agreement with the classical Hansch theory, which advocates 

an optimum lipophilicity window beyond which the biological activity decreases (Hansch & Fujita, 

1964; Kubinyi, 1993).  
 

The negative contribution to activity from the steric and polarizability effects is captured by the MR 

descriptor with a relatively small coefficient. MR reflects both molecular volume and electronic 

deformability; thus, bulkier and more polarizable molecules tend to show slightly reduced biological 

activity. This may imply that steric hindrance could restrict the ability of larger ligands to assume an 

optimal binding conformation within the active site, assuming that the pocket of the target is spatially 

constrained. Similar observations have been reported in QSAR studies where increases in molecular 

size adversely affected binding efficiency due to unfavorable steric clashes or reduced conformational 

flexibility (Hansch et al., 1995; Todeschini and Consonni, 2009). Taking into consideration this 

negative MR contribution supports the idea of compact molecular frameworks with controlled 

polarizability being preferable for achieving higher potency within this ligand series (OECD, 2014; Roy 

et al., 2015). 
 

The ten tamoxifen derivatives studied based on ADMET properties: absorption, distribution, 

metabolism, excretion and toxicity have the best absorption of ten tamoxifen derivatives. Most of the 

compounds had good skin permeability (Log KP > -2.5), high intestinal absorption (HIA > 90%) and 

good skin permeability based on absorption analysis. Meanwhile all substances exhibited a low 

solubility aqueously, but the better solubility was achieved by raloxifene (-3.716 log mol/L). Most of 

the included compounds also showed high Human Intestinal Absorption (HIA > 90%), suggesting good 

absorption and possibility of effective oral bioavailability. Still, poor aqueous solubility continues as an 

important barrier, which may block systemic circulation and requirement for modifications for 

formulations (Pires et al., 2015). Notwithstanding effective skin penetration (Log KP > −2.5), 

transdermal administration might not be the ideal method for the systemic anticancer therapy (Nystrom 

& Sanchez, 2011). The Caco-2 permeability values varied greatly across the derivatives, with 

ospemifene providing the highest permeability (1.178 x 10⁻⁶ cm/s). The derivatives identified as P-

glycoprotein (P-gp) substrates and inhibitors and multidrug resistance mechanisms. Distribution of 

VDss varied widely with idoxifene with the largest VDss (1.056 log L/kg), confirming wide tissue 

distribution. The BBB permeability (log BB) ranged from -1.039 (raloxifene) to 1.329 (tamoxifen) 

indicating that certain derivatives were sufficient to cross the blood-brain barrier, as per the latter of 

which the CNS may take influence. Yet, CNS permeability (log PS) values were all < -2, suggesting 

that none of the compounds can penetrate the CNS effectively. All derivatives were metabolized by 

CYP3A4, and most were CYP1A2 inhibitors, suggesting possible drug-drug interactions. Interestingly, 

raloxifene and ospemifene were not CYP2D6 inhibitors, which suggests a lower likely effect of 

CYP2D6-metabolized medications on CYP2D6-metabolized drug. The total values of clearance ranged 

from 0.192 (ospemifene) to 0.81 log ml/min/kg (lasofoxifene), suggesting differential elimination rates. 

None of these compounds were kidney OCT2 substrates, indicating that they showed a slight interaction 
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with renal excretion. 
 

Metabolically, most tamoxifen derivatives serve as substrates for CYP3A4, underlining the enzyme's 

pivotal role in their metabolic clearance. Notably, Raloxifen and Ospemifen, which do not inhibit 

CYP2D6, present a reduced risk of adverse drug interactions, highlighting their potential for safer use 

in polypharmacy settings (Chen et al., 2020). These findings are consistent with prior studies that 

emphasize the role of CYP3A4 and CYP2D6 in the metabolism of selective estrogen receptor 

modulators (SERMs) (Brøsen & Naranjo, 2001). The varying clearance rates, particularly Lasofoxifen's 

high clearance (0.81 log ml/min/kg), imply a narrower therapeutic window, necessitating careful 

therapeutic monitoring and dosage adjustments (Krihariyani et al., 2020). 
 

Toxicity predictions revealed that all derivatives were non-carcinogenic, but some exhibited 

hepatotoxicity (tamoxifen B, toremifene, 4-hydroxy tamoxifen, and tamoxifen A). The LD50 values 

ranged from 324 mg/kg (lasofoxifene) to 3000 mg/kg (tamoxifen B), indicating a generally acceptable 

safety profile. Most compounds fell within toxicity level IV, with tamoxifen B categorized as level V, 

suggesting the highest safety margin. Toxicological assessments indicate minimal carcinogenic risks 

across the compounds, aligning with their current clinical applications. However, hepatotoxicity 

observed in Toremifen and 4-hydroxy tamoxifen necessitates hepatic function monitoring during 

therapeutic use. The wide LD50 range (324–3000 mg/kg) implies an overall acceptable safety profile, 

yet further in vivo validation is essential for clinical translation (Banerjee et al., 2024). The 

identification of hepatotoxic risk factors also encourages structural modifications to reduce off-target 

toxicity while maintaining therapeutic efficacy (Widiyanti et al., 2021). 
 

Table 4. In Silico Prediction of Absorption-Distribution Profiles for Tamoxifen and Its Derivatives 

 

The rational design of next-generation tamoxifen analogs necessitates an early, integrated ADMET 

strategy to balance absorption, distribution, metabolism, excretion, and toxicity. This strategy involves 

fine-tuning key physicochemical and electronic properties to maximize efficacy and safety (Xiao et al., 

Compo

und 

Absorption Distribution 

Water 

Solubi

lity 

(log 

mol/L

) 

Caco2 

Permea

bility 

(log 

Papp in 

10-6 

cm/s) 

HI

A 

Skin 

Permea

bility 

(Log 

KP) 

P-gp 

substr

ate 

P-gp I 

Inhibi

tor 

P-gp 

II 

Inhibi

tor 

VD

ss 

(log 

L/k

g) 

Unbo

und 

Fracti

on 

(fu) 

BBB 

Permea

bility 

(log BB) 

CNS 

Permea

bility 

(log PS) 

Tamoxif

en 
-5.929 1.065 

96.8

85 
-2.737 yes yes yes 0.83 0.093 1.329 -1.473 

Raloxife

ne 
-3.716 0.77 

93.5

22 
-2.735 yes yes yes 

-

1.49

2 

0.114 -1.039 -1.932 

Tamoxif

ene A 
-5.816 1.058 

97.0

95 
-2.737 yes yes yes 

0.78

6 
0.095 1.072 -1.499 

Tamoxif

ene B 
-5.043 0.872 

95.5

53 
-2.753 yes yes yes 

0.63

2 
0.124 -0.16 -0.914 

Idoxifen

e 
-6.165 1.058 

94.9

96 
-2.727 yes yes yes 

1.05

6 
0.064 1.295 -1.945 

Toremif

ene 
-6.226 0.971 

96.4

8 
-2.735 yes yes yes 0.36 0.123 1.273 -1.342 

Ospemif

ene 
-6.527 1.178 

95.6

48 
-2.736 yes yes yes 

-

0.13

2 

0.131 1.07 -1.418 

4-

hydroxy 

tamoxife

ne 

-5.099 1.026 
93.5

41 
-2.735 yes yes yes 

0.30

5 
0.008 -0.292 -1.278 

Lasofoxi

fene 
-5.471 0.895 

96.0

01 
-2.737 yes yes yes 

-

0.30

8 

0.078 -0.302 -1.539 

Endoxif

en 
-5.012 1.02 

93.7

51 
-2.735 yes yes yes 

0.25

8 
0.01 -0.401 -1.303 
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2024; Wang, Clark & Ma’ayan, 2016). In accordance with Lipinski's rule of five, it is imperative to 

maintain calculated lipophilicity (cLogP) below 5 to ensure adequate membrane permeability and oral 

bioavailability (Lipinski et al., 2001). Furthermore, it is essential to optimize molar refractivity (MR) 

between 40 and 130 to support favorable van der Waals interactions without exacerbating hydrophobic 

toxicity. The hepatotoxicity of tamoxifen, which has been extensively documented, encompasses a 

range of adverse effects, including steatosis, cholestasis, and, in rare instances, peliosis hepatis. 
 

Table 5. In silico prediction of metabolism-excretion profiles for tamoxifen and its derivatives 

Compound 

Metabolism Excretion 

CYP2D6 

Substrate 

CYP3A4 

Substrate 

CYP1A2 

Inhibitor 

CYP2C9 

Inhibitor 

CYP2D6 

Inhibitor 

CYP3A4 

Inhibitor 

Total 

Clearence 

(log 

ml/min/kg) 

Renal 

Substrate 

OCT2 

Tamoxifen No Yes Yes No Yes No 0.556 No 

Raloxifene No Yes Yes Yes No Yes 0.746 No 

Tamoxifene 

A 
No Yes Yes No Yes Yes 0.661 No 

Tamoxifene 

B 
No Yes Yes No Yes No 0.685 No 

Idoxifene No Yes Yes No Yes No 0.726 No 

Toremifene No Yes Yes No Yes No 0.587 No 

Ospemifene No Yes Yes No No Yes 0.192 No 

4-hydroxy 

tamoxifene 
No Yes Yes No Yes No 0.594 No 

Lasofoxifene No Yes Yes No Yes No 0.81 No 

Endoxifen No Yes Yes No Yes No 0.7 No 

 

The mechanism underlying this toxicity is primarily attributed to the generation of reactive metabolites 

by CYP2D6, which induce mitochondrial dysfunction, oxidative stress, and hepatocyte apoptosis 

(Chitturi & Farrell, 2013; Zhao et al., 2014). At the molecular-orbital level, the energy of the lowest 

unoccupied molecular orbital (LUMO) is reduced by electron-withdrawing substituents, thereby 

enhancing the stacking of pi-pi bonds and the formation of hydrogen bonds with aromatic residues in 

the ERα binding pocket. This, in turn, strengthens the binding of antagonists while preserving cLogP 

and MR within optimal ranges through iterative in silico docking and ADMET modeling (Zhang et al., 

2023; Yuan et al., 2023). 
 

Table 6. In silico toxicity assessment of tamoxifen and its Derivatives

Compoud 
Toxicity 

LD50 Prediction (mg/kg) Toxicity level Carcinogenicity Hepatotoxicity 

Tamoxifen 1190 IV No Yes 

Raloxifene 1000 IV No No 

Tamoxifene A 1190 IV No Yes 

Tamoxifene B 3000 V No Yes 

Idoxifene 1700 IV Yes No 

Toremifene 1700 IV No Yes 

Ospemifene 1700 IV No No 

4-hydroxy tamoxifene 1190 IV No Yes 

Lasofoxifene 324 IV No No 

Endoxifen 1190 IV No No 

 

4. CONCLUSION  
 

The findings of this study reveal a significant relationship between molecular parameters and the 

anticancer activity of tamoxifen derivatives against breast cancer. The validated QSAR equation, pIC50 
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= -0.059CLogP + 0.759LUMO - 0.011MR + 3.444, highlights the influence of LUMO energy as the 

most impactful molecular descriptor, followed by CLogP and MR. Increasing LUMO while reducing 

CLogP and MR values may enhance the anticancer potential of these derivatives. ADMET predictions 

indicate that most derivatives exhibit high intestinal absorption (HIA > 90%), low water solubility, and 

adequate skin permeability. While metabolism primarily involves the CYP3A4 enzyme, raloxifene and 

ospemifene do not affect CYP2D6, minimizing potential drug interactions. The hepatotoxic potential 

of certain derivatives suggests the need for careful consideration in further drug development. Despite 

these risks, the LD50 values remain within a safe range (324–3000 mg/kg), suggesting acceptable safety 

profiles. 
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