Optimizing the Learning Rate Hyperparameter for Hybrid BiLSTM-FFNN Model in a Tourism Recommendation System

Aufa Ab'dil Mustofa, Erwin Budi Setiawan

Abstract


Indonesia, with its abundant natural resources, is rich in captivating tourist attractions. Tourism, a vital economic sector, can be significantly influenced by digitalization through social media. However, the overwhelming amount of information available can confuse tourists when selecting suitable destinations. This research aims to develop a tourism recommendation system employing content-based filtering (CBF) and hybrid Bidirectional Long Short-Term Memory Feed-Forward Neural Network (BiLSTM-FFNN) model to assist tourists in making informed choices. The dataset comprises 9,504 rating matrices obtained from tweet data and reputable web sources. In various experiments, the hybrid BiLSTM-FFNN model demonstrated superior performance, achieving an accuracy of 93.36% following optimization with the Stochastic Gradient Descent (SGD) algorithm at a learning rate of about 0.193. The accuracy, after applying Synthetic Minority Over-sampling Technique (SMOTE) and fine-tuning the learning rate hyperparameter, showed a 14.3% improvement over the baseline model. This research contributes by developing a recommendation system method that integrates CBF and hybrid deep learning with high accuracy and provides a detailed analysis of optimization techniques and hyperparameter tuning.


Full Text:

PDF

References


M. Ridwan, “Jurnal Ekonomi Dan Bisnis Islam Jurnal Ecopreneur Upaya Masyarakat Dalam Publikasi Destinasi Wisata Untuk Peningkatan Ekonomi Desa Leuwikujang,” Jurnal Ekonomi dan Bisnis Islam, vol. I, no. Ekonomi, pp. 30–45, 2020.

D. M. Sari and A. S, “IMPLEMENTASI SISTEM PENGENALAN WISATA BAHARI BERBASIS WEBSITE KABUPATEN MAJENE,” Jurnal Teknik Informatika, vol. 13, no. 2, pp. 123–132, Feb. 2021, doi: 10.15408/jti.v13i2.16956.

B. P. S. Indonesia, “Kunjungan wisatawan mancanegara pada Desember 2023 mencapai 1,14 juta kunjungan, naik 20,17 persen (year-on-year).,” Badan Pusat Statistik Indonesia, Feb. 01, 2024. https://www.bps.go.id/id/pressrelease/2024/02/01/2347. [Online].

A. S. Ningrum, H. C. Rustamaji, and Y. Fauziah, “CONTENT BASED DAN COLLABORATIVE FILTERING PADA REKOMENDASI TUJUAN PARIWISATA DI DAERAH YOGYAKARTA,” Telematika, vol. 16, no. 1, p. 44, Apr. 2019, doi: 10.31315/telematika.v16i1.3023.

S. Supriyanto and J. Fahana, “Possible System Architecture for Travel Recommender,” JOIN (Jurnal Online Informatika), vol. 5, no. 1, pp. 1–8, Jul. 2020, doi: 10.15575/join.v5i1.573.

B. M. G. A. Awienoor, and E.B. Setiawan, “Movie Recommendation System Based on Tweets Using Switching Hybrid Filtering with Recurrent Neural Network,” International Journal of Intelligent Engineering and Systems, vol. 17, no. 2, pp. 277–293, Apr. 2024, doi: 10.22266/ijies2024.0430.24.

D. Roy and M. Dutta, “A systematic review and research perspective on recommender systems,” J Big Data, vol. 9, no. 1, 2022, doi: 10.1186/s40537-022-00592-5.

N. Buslim, L. K. Oh, M. H. A. Hardy, and Y. Wijaya, “Comparative analysis of KNN, Naïve Bayes and SVM algorithms for movie genres classification based on synopsis.,” Jurnal Teknik Informatika, vol. 15, no. 2, pp. 169–177, Dec. 2022, doi: 10.15408/jti.v15i2.29302.

A. Z. Mustaqim, N. A. Fadil, and D. A. Tyas, “Artificial Neural Network for classification task in tabular datasets and image Processing: A Systematic Literature review,” JOIN (Jurnal Online Informatika), vol. 8, no. 2, pp. 158–168, Dec. 2023, doi: 10.15575/join.v8i2.1002.

G. Xu, Y. Meng, X. Qiu, Z. Yu, and X. Wu, “Sentiment analysis of comment texts based on BILSTM,” IEEE Access, vol. 7, pp. 51522–51532, Jan. 2019, doi: 10.1109/access.2019.2909919.

S. Sahu, R. Kumar, M. S. Pathan, J. Shafi, Y. Kumar, and M. F. Ijaz, “Movie Popularity and Target Audience Prediction Using the Content-Based Recommender System,” IEEE Access, vol. 10, pp. 42030–42046, 2022, doi: 10.1109/ACCESS.2022.3168161.

S. Missaoui, F. Kassem, M. Viviani, A. Agostini, R. Faiz, and G. Pasi, “LOOKER: a mobile, personalized recommender system in the tourism domain based on social media user-generated content,” Personal and Ubiquitous Computing, vol. 23, no. 2, pp. 181–197, Jan. 2019, doi: 10.1007/s00779-018-01194-w.

S. Reddy, S. Nalluri, S. Kunisetti, S. Ashok, and B. Venkatesh, “Content-Based Movie Recommendation System using genre correlation,” in Smart innovation, systems and technologies, 2018, pp. 391–397. doi: 10.1007/978-981-13-1927-3_42.

S. Bhaskaran and R. Marappan, “Enhanced personalized recommendation system for machine learning public datasets: generalized modeling, simulation, significant results and analysis,” International Journal of Information Technology (Singapore), vol. 15, no. 3, pp. 1583–1595, 2023, doi: 10.1007/s41870-023-01165-2.

M. Fu, H. Qu, Z. Yi, L. Lu, and Y. Liu, “A novel Deep Learning-Based Collaborative filtering model for recommendation system,” IEEE Transactions on Cybernetics, vol. 49, no. 3, pp. 1084–1096, Mar. 2019, doi: 10.1109/tcyb.2018.2795041.

B. Markapudi, K. Chaduvula, D. N. V. S. L. S. Indira, and M. V. N. S. S. R. K. S. Somayajulu, “Content-based video recommendation system (CBVRS): a novel approach to predict videos using multilayer feed forward neural network and Monte Carlo sampling method,” Multimedia Tools and Applications, vol. 82, no. 5, pp. 6965–6991, Aug. 2022, doi: 10.1007/s11042-022-13583-8.

J. Shen, J. Wu, M. Xu, D. Gan, B. An, and F. Liu, “A Hybrid Method to Predict Postoperative Survival of Lung Cancer Using Improved SMOTE and Adaptive SVM,” Comput Math Methods Med, vol. 2021, 2021, doi: 10.1155/2021/2213194.

N. B. Lhachemi, E. H. Nfaoui, and J. Boumhidi, "Hashtag Recommender System Based on LSTM Neural Reccurent Network", In: Proc. of 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS), 2019, pp. 1-6, doi: 10.1109/ICDS47004.2019.8942380.

G. Ramadhan and E. B. Setiawan, “Collaborative Filtering Recommender System Based on Memory Based in Twitter Using Decision Tree Learning Classification (Case Study : Movie on Netflix),” In: Proc. of 2022 International Conference on Advanced Creative Networks and Intelligent Systems (ICACNIS), Bandung, pp. 1-6, 2022, doi: 10.1109/ICACNIS57039.2022.10055248.

C. Channarong, C. Paosirikul, S. Maneeroj, and A. Takasu, “HybridBERT4Rec: A Hybrid (Content-Based Filtering and Collaborative Filtering) Recommender System Based on BERT,” IEEE Access, vol. 10, pp. 56193–56206, 2022, doi: 10.1109/ACCESS.2022.3177610.

A. Aninditya, M. A. Hasibuan, and E. Sutoyo, “Text Mining Approach Using TF-IDF and Naive Bayes for Classification of Exam Questions Based on Cognitive Level of Bloom’s Taxonomy,” 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), Nov. 2019, doi: 10.1109/iotais47347.2019.8980428.

A. Yusmar, L. K. Wardhani, and H. B. Suseno, “RESTAURANT RECOMMENDER SYSTEM USING ITEM BASED COLLABORATIVE FILTERING AND ADJUSTED COSINE ALGORITHM SIMILARITY,” Jurnal Teknik Informatika, vol. 14, no. 1, pp. 93–100, Sep. 2021, doi: 10.15408/jti.v14i1.21102.

C. W. Kencana, E. B. Setiawan, and I. Kurniawan, “Hoax Detection System on Twitter using Feed-Forward and Back-Propagation Neural Networks Classification Method,” Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 4, no. 4, pp. 655–663, Aug. 2020, doi: 10.29207/resti.v4i4.2038.

G. Srivastav and S. Kant, “Review on e-Learning Environment Development and context aware recommendation systems using Deep Learning,” 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Oct. 2019, doi: 10.1109/rdcape47089.2019.8979066.

B. Choe, T. Kang, and K. Jung, “Recommendation System with Hierarchical Recurrent Neural Network for Long-Term Time Series”, IEEE Access, Vol. 9, pp. 72033–72039, 2021, doi: 10.1109/ACCESS.2021.3079922.

Y. M. Arif, D. Wardani, H. Nurhayati, and N. M. Diah, “Non-Rating Recommender system for choosing tourist destinations using artificial neural network,” Applied Information System and Management, vol. 6, no. 2, pp. 61–68, Sep. 2023, doi: 10.15408/aism.v6i2.26741.

J. Xiang, Z. Qiu, Q. Hao, and H. Cao, “Multi-time scale wind speed prediction based on WT-bi-LSTM,” MATEC Web of Conferences, vol. 309, p. 05011, Jan. 2020, doi: 10.1051/matecconf/202030905011.

B. K. Yousafzai et al., “Student-Performulator: Student academic performance using hybrid deep neural network,” Sustainability, vol. 13, no. 17, p. 9775, Aug. 2021, doi: 10.3390/su13179775.

A. D. Safira and E. B. Setiawan, “Hoax Detection in Social Media using Bidirectional Long Short-Term Memory (Bi-LSTM) and 1 Dimensional-Convolutional Neural Network (1D-CNN) Methods,” 11th International Conference on Information and Communication Technology (ICoICT), Aug. 2023, doi: 10.1109/icoict58202.2023.10262528.

K. U. Wijaya, and E. B. Setiawan, "Hate Speech Detection Using Convolutional Neural Network and Gated Recurrent Unit with FastText Feature Expansion on Twitter," JITEKI : Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, 9.3 (2023): 619-631. 2024. doi: 10.26555/jiteki.v9i3.26532.

M. U. Salur and I. Aydin, “A novel hybrid deep learning model for sentiment classification,” IEEE Access, vol. 8, pp. 58080–58093, Jan. 2020, doi: 10.1109/access.2020.2982538.

S. Moldovanu, C.-D. Obreja, K. C. Biswas, and L. Moraru, “Towards accurate diagnosis of skin lesions using feedforward back propagation neural networks,” Diagnostics, vol. 11, no. 6, p. 936, May 2021, doi: 10.3390/diagnostics11060936.

M. Sangiorgio and F. Dercole, “Robustness of LSTM neural networks for multi-step forecasting of chaotic time series,” Chaos, Solitons & Fractals/Chaos, Solitons and Fractals, vol. 139, p. 110045, Oct. 2020, doi: 10.1016/j.chaos.2020.110045.

N. Fatima, “Enhancing Performance of a Deep Neural Network: A Comparative Analysis of Optimization Algorithms”, ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, Vol. 9, No. 2, pp. 79–90, 2020, doi: 10.14201/adcaij2020927990.

S. Vani and T. V. M. Rao, “An Experimental Approach towards the Performance Assessment of Various Optimizers on Convolutional Neural Network,” 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Apr. 2019, doi: 10.1109/icoei.2019.8862686.

Y. Li, C. Wei, and T. Ma, “Towards explaining the regularization effect of initial large learning rate in training neural networks,” Neural Information Processing Systems, vol. 32, pp. 11669–11680, Jul. 2019, [Online].

J. Jepkoech, D. M. Mugo, B. K. Kenduiywo, and E. C. Too, “The effect of adaptive learning rate on the accuracy of neural networks,” International Journal of Advanced Computer Science and




DOI: https://doi.org/10.15408/jti.v17i2.40250 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Aufa Ab'dil Mustofa,Erwin Budi Setiawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id


Creative Commons Licence
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.

JTI Visitor Counter: View JTI Stats

 Flag Counter