A Case Study: Comparison of LSTM and GRU Methods for Forecasting Oil, Non-Oil, and Gas Export Values in Indonesia

Dian Kurniasari, Maydia Egi Nuraini, Wamiliana Wamiliana, Rizki Khoirun Nisa

Abstract


This study explores the forecasting of Indonesia’s oil, non-oil, and gas export values, highlighting its critical role in supporting national economic growth. Given the inherent volatility in export values, accurate forecasting is vital for informed economic decision-making. The research employs Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models, both well-regarded for their ability to handle sequential data and complex temporal patterns. Model performance was evaluated using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The findings indicate that although both models produced nearly identical MAPE values of 99.99% across the oil, non-oil, and gas sectors, the GRU model outperformed the LSTM model with RMSE values of 0.0655 for oil and gas exports and 0.0697 for non-oil and gas exports. Moreover, the GRU model’s forecasts align closely with data from the Central Bureau of Statistics (BPS), which reported an 11.33% decline in Indonesia’s export values by the end of 2023. These results suggest that the GRU model not only offers greater accuracy but is also applicable to other economic forecasting contexts, such as exchange rate and inflation predictions, thereby enhancing economic policy-making.


Keywords


Export, LSTM, GRU, RMSE, MAPS, Forecasting

Full Text:

PDF

References


P. Djatmiko and N. SBM, “Impact Non-Oil and Gas Exports and Oil and Gas Exports on The Position of Indonesia Foreign Exchange Reserves,” J. Pendidik. Ekon. Dan Bisnis, vol. 7, no. 1, pp. 87–100, 2019, https://doi.org/10.21009/jpeb.007.1.8

K. Martikasari, “Analisis Faktor Yang Mempengaruhi Ekspor Nonmigas Di Indonesia,” J. Pendidik. Ekon. dan Akunt., vol. 15, no. 2, pp. 47–56, Apr. 2022, https://doi.org/10.24071/jpea.v15i2.4623

S. E. Rahayu, “Analysis of Indonesian Non-Oil and Gas Export Development by Manufacturing Sector 2016-2020 Period,” J. Int. Conf. Proc., vol. 4, no. 2, 2021, https://doi.org/10.32535/jicp.v4i2.1294

K. A. Rijal, A. Vega Vitianingsih, Y. Kristyawan, A. Lidya Maukar, S. Fitri, and A. Wati, “Forecasting Model of Indonesia’s Oil & Gas and Non-Oil & Gas Export Value using Var and LSTM Methods,” vol. 10, pp. 59–69, 2024, [Online]. Available: http://http//jurnal.unmer.ac.id/index.php/jtmi

R. W. Ramadhan, F. Iqbal, N. P. Utamy, and A. N. Ananda, “Pengaruh Ekspor Sektor Migas dan Nonmigas Terhadap PDB Indonesia,” J. Ekon. Manaj. dan Sos., vol. 6, no. 2, pp. 62–71, 2023, https://doi.org/10.56071/jemes.v6i2.602

M. L. Purba, M. Sihombing, and J. Sihotang, “Analisis Pengaruh Ekspor Migas, Ekspor Non Migas Dan Penanaman Modal Asing Terhadap Pertumbuhan Ekonomi Indonesia Tahun 2000-2019,” J. Econ. Bus., vol. 2, no. 2, pp. 40–51, 2021, https://doi.org/10.36655/jeb.v2i2.557

J. Hao and F. Liu, “Improving long-term multivariate time series forecasting with a seasonal-trend decomposition-based 2-dimensional temporal convolution dense network,” Sci. Rep., vol. 14, no. 1, 2024, https://doi.org/10.1038/s41598-024-52240-y

G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis: Forecasting and control: Fourth edition. 2013. https://doi.org/10.1002/9781118619193

M. Alizadeh, S. Rahimi, and J. Ma, “A hybrid ARIMA–WNN approach to model vehicle operating behavior and detect unhealthy states,” Expert Syst. Appl., vol. 194, 2022, https://doi.org/10.1016/j.eswa.2022.116515

S. Smyl, “A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting,” Int. J. Forecast., vol. 36, no. 1, pp. 75–85, 2020, https://doi.org/10.1016/j.ijforecast.2019.03.017

S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, “Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018, pp. 5457–5466. https://doi.org/10.1109/CVPR.2018.00572

G. P. Zhang, Neural Networks in Business Forecasting. 2011. https://doi.org/10.4018/978-1-59140-176-6

M. K. Sandhya Arora, “Forecasting the Future: A Comprehensive Review of Time Series Prediction Techniques,” 2024. https://doi.org/10.52783/jes.1478

L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory pada Data Time Series untuk Memprediksi Penjualan Produk PT. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, 2019.

W. Hastomo, A. S. B. Karno, N. Kalbuana, E. Nisfiani, and L. ETP, “Optimasi Deep Learning untuk Prediksi Saham di Masa Pandemi Covid-19,” J. Edukasi dan Penelit. Inform., vol. 7, no. 2, p. 133, 2021, https://doi.org/10.26418/jp.v7i2.47411

A. Ubrani and S. Motwani, “LSTM- and GRU-based time series models for market clearing price forecasting of Indian deregulated electricity markets,” in Advances in Intelligent Systems and Computing, 2019, pp. 693–700. https://doi.org/10.1007/978-981-13-3393-4_70

W. Budiharto, “Data science approach to stock prices forecasting in Indonesia during Covid-19 using Long Short-Term Memory (LSTM),” J. Big Data, vol. 8, no. 1, 2021, https://doi.org/10.1186/s40537-021-00430-0

R. Cahuantzi, X. Chen, and S. Güttel, “A Comparison of LSTM and GRU Networks for Learning Symbolic Sequences,” in Lecture Notes in Networks and Systems, 2023, pp. 771–785. https://doi.org/10.1007/978-3-031-37963-5_53

M. O. Alassafi, M. Jarrah, and R. Alotaibi, “Time series predicting of COVID-19 based on deep learning,” Neurocomputing, vol. 468, pp. 335–344, 2022, https://doi.org/10.1016/j.neucom.2021.10.035

A. C. Ozdemir, K. Buluş, and K. Zor, “Medium- to long-term nickel price forecasting using LSTM and GRU networks,” Resour. Policy, vol. 78, 2022, https://doi.org/10.1016/j.resourpol.2022.102906

M. Abumohsen, A. Y. Owda, and M. Owda, “Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms,” Energies, vol. 16, no. 5, 2023, https://doi.org/10.3390/en16052283

E. R. Ziegel, U. M. Fayyad, G. Piatetski-Shapiro, P. Smyth, and R. Uthurusamy, “Advances in Knowledge Discovery and Data Mining,” Technometrics, vol. 40, no. 1, p. 83, 1998, https://doi.org/10.2307/1271414

S. H. Javaheri, M. M. Sepehri, and B. Teimourpour, “Response Modeling in Direct Marketing. A Data Mining-Based Approach for Target Selection.,” in Data Mining Applications with R, 2013, pp. 153–180. https://doi.org/10.1016/B978-0-12-411511-8.00006-2

M. K. Uçar, M. Nour, H. Sindi, and K. Polat, “The Effect of Training and Testing Process on Machine Learning in Biomedical Datasets,” Math. Probl. Eng., vol. 2020, 2020, https://doi.org/10.1155/2020/2836236

H. Abhirawa, M. S. Jondri, and A. Arifianto, “Pengenalan Wajah Menggunakan Convolutional Neural Network Face Recognition Using Convolutional Neural Network,” 2017.

A. Santoso and G. Ariyanto, “Implementasi Deep Learning berbasis Keras untuk Pengenalan Wajah,” Emit. J. Tek. Elektro, vol. 18, no. 1, pp. 15–21, 2018, https://doi.org/10.23917/emitor.v18i01.6235

R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Long short-term memory based operation log anomaly detection,” in 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, 2017, pp. 236–242. https://doi.org/10.1109/ICACCI.2017.8125846

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” Dec. 2014, [Online]. Available: http://arxiv.org/abs/1412.3555

N. Giarsyani, “Komparasi Algoritma Machine Learning dan Deep Learning untuk Named Entity Recognition : Studi Kasus Data Kebencanaan,” Indones. J. Appl. Informatics, vol. 4, no. 2, p. 138, 2020, https://doi.org/10.20961/ijai.v4i2.41317

N. M. Ashar, I. Cholissodin, and C. Dewi, “Penerapan Metode Extreme Learning Machine (ELM) Untuk Memprediksi Jumlah Produksi Pipa Yang Layak (Studi Kasus Pada PT. KHI Pipe Industries),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4621–4628, 2018.

M. V Makridakis, S., Wheelwright S.C, “Metode dan Aplikasi Peramalan,” Ed. Kedua Jilid Satu. Jakarta Erlangga, vol. 6, no. 1, pp. 48–58, 2017, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

H. Budiman, “Analisis Dan Perbandingan Akurasi Model Prediksi Rentet Waktu Support Vector Machines Dengan Support Vector Machines Particle Swarm Optimization Untuk Arus Lalu Lintas Jangka Pendek,” Syst. Inf. Syst. Informatics J., vol. 2, no. 1, pp. 19–24, 2016, https://doi.org/10.29080/systemic.v2i1.103

“Perkembangan Ekspor dan Impor Indonesia Desember 2023,” Badan Pusat Statistik, pp. 1–16, 2023.




DOI: https://doi.org/10.15408/jti.v17i2.39098 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Dian Kurniasari, Maydia Egi Nuraini, Wamiliana Wamiliana, Rizki Khoirun Nisa

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id


Creative Commons Licence
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.

JTI Visitor Counter: View JTI Stats

 Flag Counter