Utilization of the FP-Growth Algorithm on MSME Transaction Data:Recommendations for Small Gifts from The Padang Region

Firman Noor Hasan, Riyan Ariyansah

Abstract


The existence of adequate transaction data turns out to have a similar sales transaction pattern for MSMEs, so it would be a shame if it were left like that. Moreover, this data can be used to increase efficiency in MSMEs in the culinary sector, one of which is as a recommendation for small gifts. The study uses the Association Rules technique, whereas fp-growth is used to obtain a combination of elements. The goal is to facilitate MSMEs' ability to suggest small gifts to clients. The fp-growth algorithm calculation was implemented to process 2043 data originating from transaction data in MSMEs, with the specified minimum support value being 15%, while the minimum confidence value determined was 55%. The results of the trial obtained the two best rules, namely, "If a customer buys a list of small gifts from Balado Sanjai Chips, then the customer will buy Jangek Crackers" and "If a customer buys Jangek Crackers, then the customer will buy Sanjai Balado Chips".


Keywords


FP-Growth;MSME;Small Gifts;Transaction Data;

Full Text:

PDF

References


A. Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” Zo. J. Sist. Inf., vol. 5, no. 1, pp. 59–70, 2023.

F. N. Hasan and A. Febriandirza, “Perancangan Data Warehouse Untuk Data Penelitian di Perguruan Tinggi Menggunakan Pendekatan Nine Steps Methodologhy,” Pseudocode, vol. VIII, no. 1, pp. 49–57, 2021.

F. N. Hasan, A. S. Aziz, and Y. Nofendri, “Utilization of Data Mining on MSMEs using FP-Growth Algorithm for Menu Recommendations,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 22, no. 2, pp. 261–270, 2023.

V. Plotnikova, M. Dumas, and F. Milani, “Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements,” Data Knowl. Eng., 2022.

M. Shawkat, M. Badawi, S. El-ghamrawy, R. Arnous, and A. El-desoky, “An optimized FP-growth algorithm for discovery of association rules,” J. Supercomput., vol. 78, pp. 5479–5506, 2022.

F. N. Hasan, “Implementasi Sistem Business Intelligence Untuk Data Penelitian di Perguruan Tinggi,” in Prosiding Seminar Nasional TEKNOKA 4, 2019, vol. 4, no. 2502, pp. I1–I10.

F. S. Ananto and F. N. Hasan, “Implementasi Algoritma Naïve Bayes Terhadap Analisis Sentimen Ulasan Aplikasi MyPertamina Pada Google Play Store,” J. ICT Inf. Commun. Technol., vol. 23, no. 1, pp. 75–80, 2023.

F. N. Dhewayani, D. Amelia, D. N. Alifah, B. N. Sari, and M. Jajuli, “Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM,” J. Teknol. dan Inf., vol. 12, no. 1, pp. 76–89, 2022.

R. Langgam.id, “Kunjungan Wisatawan ke Padang Naik di 2023, PAD Sektor Pariwisata Melonjak,” langgam.id, 2024. [Online]. Available: https://langgam.id/kunjungan-wisatawan-ke-padang-naik-di-2023-pad-sektor-pariwisata-melonjak/#:~:text=Langgam.id - Tingkat kunjungan wisatawan ke Kota Padang,kunjungan. Angka ini mengalami peningkatan dibandingkan 2022 lalu.

H. D. Al Assyam and F. N. Hasan, “Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 341–349, 2023.

R. F. Sari and D. Marlius, “No TitlePengaruh Kualitas Pelayanan dan Harga terhadap Kepuasan Konsumen pada D’sruput Lapai Padang,” JPT J. Pendidik. Tambusai, vol. 7, no. 1, pp. 1801–1812, 2023.

F. N. Hasan and I. K. Sudaryana, “Penerapan Business Intelligence & Online Analytical Processing untuk Data-Data Penelitian dan Luarannya pada Perguruan Tinggi Menggunakan Pentaho,” INFOTECH J. Technol. Inf., vol. 8, no. 2, pp. 85–92, 2022.

J. Ferreira, “Café nation? Exploring the growth of the UK café industry,” AREA Ethics In/Of Geoghraphical Res., vol. 49, no. 1, pp. 69–76, 2016.

J. Fernos and I. Wipi, “Pengaruh Kompensasi dan Motivasi Terhadap Kinerja Pegawai pada Badan Pendapatan Daerah (BAPENDA) Kota Padang,” VALUASI J. Ilm. Ilmu Manaj. dan Kewirausahaan, vol. 3, no. 2, pp. 647–661, 2023.

W. ’UPurbasari et al., Sistem Basis Data. Makassar: Tohar Media, 2024.

F. N. Hasan, F. Sidik, and P. Afikah, “Sentiment Analysis of Community Response on Cooking Oil Price Increase Policy with Naïve Bayes Classifier Algorithm,” J. Linguist. Komputasional, vol. 5, no. 2, pp. 71–76, 2022.

M. Magdalena, Z. Zusmawati, J. Algusri, J. Fernos, and F. Rozi, “The Influence of Price Perception, Promotion, and Online Costumer Review on Consumer Buying Interests Lazada E-Commerce in Padang District,” e-Jurnal Apresiasi Ekon., vol. 11, no. 1, pp. 41–48, 2023.

I. R. Afandi, F. N. Hasan, A. A. Rizki, N. Pratiwi, and Z. Halim, “Analisis Sentimen Opini Masyarakat Terkait Pelayanan Jasa Ekspedisi Anteraja Dengan Metode Naive Bayes,” J. Linguist. Komputasional, vol. 5, no. 2, pp. 63–70, 2022.

A. Bartschat, M. Reischl, and R. Mikut, “Data Mining Tools,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 9, no. 4, pp. 1–14, 2019.

A. Sani, Samuel, D. Suryadi, F. N. Hasan, A. D. Wiranata, and S. Aisyah, “Predicting the Success of Garment Sales on Transaction Data using the Classification Method with the Naïve Bayes Algorithm,” in ICCoSITE: 2023 International Conference on Computer Science, Information Technology and Engineering, 2023, pp. 234–239.

P. S. Nishtala, T. yuan Chyou, F. Held, D. G. Le Couteur, and D. Gnjidic, “Association rules method and big data: Evaluating frequent medication combinations associated with fractures in older adults,” Pharmacoepidemiol. Drug Saf., vol. 27, no. 10, pp. 1123–1130, 2018.

J. R. Chang, Y. S. Chen, C. K. Lin, and M. F. Cheng, “Advanced Data Mining of SSD Quality Based on FP-Growth Data Analysis,” Appl. Sci., vol. 11, no. 4, pp. 1–15, 2021.

S. Kurniawan, W. Gata, and H. Wiyana, “Analisis Algoritma FP-Growth Untuk Rekomendasi Produk pada Data Retail Penjualan Produk Kosmetik (Studi Kasus: MT Shop Kelapa Gading),” in SENTIKA 2018: Seminar Nasional Teknologi Informasi dan Komunikasi 2018, 2018, pp. 61–69.

A. Maulana and A. A. Fajrin, “Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor,” KLIK Kumpul. J. Ilmu Komput., vol. 5, no. 1, 2018.

A. Salam, J. Zeniarja, W. Wicaksono, and L. Karisma, “Pencarian Pola Asosiasi Untuk Penataan Barang Dengan Menggunakan Perbandingan Algoritma Apriori dan FP-Growth (Studi Kasus Distro EPO Store Pemalang),” DINAMIK, vol. 23, no. 2, 2018.

D. D. Johnson, “Learning Graphical State Transitions,” in ICLR 2017: 5th International Conference on Learning Representations, 2022.

V. N. Latifah, M. T. Furqon, and N. Santoso, “Implementasi Algoritme Modified-Apriori Untuk Menentukan Pola Penjualan Sebagai Strategi Penempatan Barang Dan Promo,” JPTIIK J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3829–3834, 2018.

S. D. Kudratovna and S. Q. Shoyqulov, “PHP is one of the main tools for creating a Web page in computer science lessons,” Texas J. Eng. Technol., vol. 9, pp. 83–87, 2022.

S. Fitriani and F. N. Hasan, “Sistem Informasi Berbasis Android untuk Meningkatkan Layanan Terhadap Alumni (Studi Kasus: Keluarga Mahasiswa Fakultas Teknik Uhamka),” in Prosiding Seminar Nasional TEKNOKA 5, 2020, vol. 5, no. 2502, pp. 93–100.

F. Sidik, I. Suhada, A. H. Anwar, and F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring Dengan Algoritma Naive Bayes Classifier,” J. Linguist. Komputasional, vol. 5, no. 1, pp. 34–43, 2022.




DOI: https://doi.org/10.15408/jti.v17i1.37966 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Firman Noor Hasan, Riyan Ariyansah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id


Creative Commons Licence
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.

JTI Visitor Counter: View JTI Stats

 Flag Counter