Performance Analysis of Support Vector Machine in Sex Classification of The Sacrum Bone in Forensic Anthropology
Abstract
Sex classification is part of forensic anthropological identification aimed at determining whether the skeleton belongs to a male or a female. This paper exhibits the performance of the Support Vector Machine (SVM) in classifying the sex of the sacrum in forensic anthropology. Bone data was measured by the metric method based on six variables, namely superior breadth, anterior length, mid ventral breadth, real height, diameter the base, and max-transverse diameter of the base. This study shows performance analysis of SVM using the library libSVM with linear, polynomial, and RBF kernel to observe the results of the comparison of the accuracy of the kernel used. According to the results of the trials, the best accuracy was attained in each kernel function, i.e., the RBF kernel is 83.33% with g = 1 and C = 1, the polynomial is 85.56% at γ = 2, C = 2 and d =1, and the linear kernel obtained best accuracy is 84.44 % with C = 2 and C = 3. In conformity with the experimental result, polynomial attained the highest accuracy of 85.56% at γ = 2, C = 2, and d =1.
Keywords
Full Text:
PDFReferences
C. Ma, H. H. Zhang, and X. Wang, "Machine learning for Big Data analytics in plants," Trends Plant Sci, vol. 19, no. 12, pp. 798-808, Dec 2014. doi: https://doi.org/10.1016/j.tplants.2014.08.004.
J. Hua, "Study on the Application of Rough Sets Theory in Machine Learning," in Second International Symposium on Intelligent Information Technology Application, 2008, pp. 192-196, doi: https://doi.org/10.1109/IITA.2008.154.
C. M. Bishop, Information Science and Statistics (Pattern Recognition and Machine Learning). New York, NY 10013, USA: Springer Science-Business Media, LLC, 2006, p. 703.
M. J. Zhan, F. Fan, L. R. Qiu, Z. Peng, K. Zhang, and Z. H. Deng, "Estimation of stature and sex from sacrum and coccyx measurements by multidetector computed tomography in Chinese," Leg Med (Tokyo), vol. 34, pp. 21-26, Sep 2018. doi: https://doi.org/10.1016/j.legalmed.2018.07.003.
S. Dayarathne, L. S. Nawarathna, and D. Nanayakkara, "Determination gender using foot, footprint, hand and hand print measurements in a Sinhalese population in Sri Lanka using supervised learning techniques," Computer Methods and Programs in Biomedicine Update, vol. 1, p. 100017, 2021/01/01/ 2021. doi: https://doi.org/10.1016/j.cmpbup.2021.100017.
D. A. El-Morsi and A. A. Al-Hawary, "Sex Determination by the Length of Metacarpals and Phalanges: X-Ray Study on Egyptian Population," (in eng), J Forensic Leg Med, vol. 20, no. 1, pp. 6-13, Jan 2013. doi: https://doi.org/10.1016/j.jflm.2012.04.020.
T.-H. Hsiao et al., "Sex Determination using Discriminant Function Analysis in Children and Adolescents: A Lateral Cephalometric Study," (in eng), Int J Legal Med, Research Support, Non-U.S. Gov't Validation Studies vol. 124, no. 2, pp. 155-160, Mar 2010. doi: https://doi.org/10.1007/s00414-009-0412-1.
A. Kocak, E. Ö. Aktas, S. Ertürk, S. Aktas, and A. Yemisçigil, "Sex Determination from the Sternal end of the Rib by Osteometric Analysis," Legal Medicine, vol. 5, no. 2, pp. pp. 100-104, 2003. doi: https://doi.org/10.1016/s1344-6223(03)00045-2.
D. Nasien, M. H. Adiya, I. Afrianty, N. A. Ali, A. A. Samah, and Y. Rahayu, "Determination of Sex and Race in Forensic Anthropology: A Comparison of Artificial Neural Network and Support Vector Machine," in 4th International Conference on Computer and Informatics Engineering (IC2IE), 2021, pp. 51-55: IEEE, doi: https://doi.org/10.1109/ic2ie53219.2021.9649182.
A. R. Klales, S. D. Ousley, and N. V. Passalacqua, "Statistical approaches to sex estimation," pp. 203-217, 2020. doi: https://doi.org/10.1016/b978-0-12-815767-1.00013-4.
M. K. Misiani, T. Amuti, S. Darbar, P. Mandela, E. Maranga, and M. Obimbo, "Sex determination from dimensions of distal tibiae in adult Kenyans: A discriminant function analysis," Translational Research in Anatomy, vol. 20, p. 100075, 2020. doi: https://doi.org/10.1016/j.tria.2020.100075.
F. d. r. Santos, P. Guyomarc’h, and J. Bruzek, "Statistical sex determination from craniometrics: Comparison of Linear Discriminant Analysis, Logistic Regression, and Support Vector Machines," 2014. doi: https://doi.org/10.1016/j.forsciint.2014.10.010.
D. K. K. Galla, B. R. Mukamalla, and R. P. R. Chegireddy, "Support vector machine based feature extraction for gender recognition from objects using lasso classifier," Journal of Big Data, vol. 7, no. 1, 2020. doi: https://doi.org/10.1186/s40537-020-00371-0.
O. A. Alimi, K. Ouahada, A. M. Abu-Mahfouz, and S. Rimer, "Power system events classification using genetic algorithm based feature weighting technique for support vector machine," Heliyon, vol. 7, no. 1, p. e05936, 2021/01/01/ 2021. doi: https://doi.org/10.1016/j.heliyon.2021.e05936.
X. Zhang, D. Qiu, and F. Chena, "Support Vector Machine with Parameter Optimization by a Novel Hybrid Method and its Application to Fault Diagnosis," Neurocomputing, vol. 149, pp. pp. 641-651, 2015. doi: https://doi.org/10.1016/j.neucom.2014.08.010.
A. Bansal, R. Agarwal, and R. K. Sharma, "SVM Based Gender Classification Using Iris Images," pp. 425-429, 2012. doi: https://doi.org/10.1109/cicn.2012.192.
W. li and Z. Liu, "A method of SVM with Normalization in Intrusion Detection," Procedia Environmental Sciences, vol. 11, pp. 256-262, 2011. Elsevier Ltd., doi: https://doi.org/10.1016/j.proenv.2011.12.040.
İ. Güven and F. Şimşir, "Demand forecasting with color parameter in retail apparel industry using artificial neural networks (ANN) and support vector machines (SVM) methods," Computers & Industrial Engineering, vol. 147, p. 106678, 2020/09/01/ 2020. doi: https://doi.org/10.1016/j.cie.2020.106678.
M. Fukuta et al., "Sex estimation of the pelvis by deep learning of two-dimensional depth images generated from homologous models of three-dimensional computed tomography images," Forensic Science International: Reports, vol. 2, p. 100129, 2020. doi: https://doi.org/10.1016/j.fsir.2020.100129.
I. Afrianty, D. Nasien, M. R. A. Kadir, and H. Haron, "Back-Propagation Neural Network for Gender Determination in Forensic Anthropology," Computational Intelligence Applications in Modeling and Control, Studies in Computational Intelligence 575, 2015. Springer International Publishing Switzerland 2015, doi: https://doi.org/10.1007/978-3-319-11017-2_11
R. Verma et al., "Estimation of sex in forensic examinations using logistic regression and likelihood ratios," Forensic Science International: Reports, vol. 2, p. 100118, 2020. doi: 10.1016/j.fsir.2020.100118.
M. Akhlaghi, A. Sheikhazadi, A. Naghsh, and G. Dorvashi, "Identification of Sex in Iranian Population using Patella Dimensions," (in eng), J Forensic Leg Med, Research Support, Non-U.S. Gov't vol. 17, no. 3, pp. pp. 150-155, Apr 2010. doi: https://doi.org/10.1016/j.jflm.2009.11.005.
M. Akhlaghi, B. Moradi, and M. Hajibeygi, "Sex Determination using Anthropometric Dimensions of the Clavicle in Iranian Population," (in eng), J Forensic Leg Med, vol. 19, no. 7, pp. pp. 381-385, Oct 2012. doi: https://doi.org/10.1016/j.jflm.2012.02.016.
J. A. Gomez-Valdes, G. T. Ramirez, S. B. Molgado, P. H. Sain-Leu, J. L. C. Caballero, and G. Sanchez-Mejorada, "Discriminant Function Analysis for Sex Asessment in Pevic Girdle Bones: Sample from the Contemporary Mexican Population," (in eng), J Forensic Sci, vol. 56, no. 2, pp. pp. 297-301, Mar 2011. doi: https://doi.org/10.1111/j.1556-4029.2010.01663.x.
J. Han, M. Kamber, and J. Pei, "Data Preprocessing," pp. 83-124, 2012. doi: https://doi.org/10.1016/B978-0-12-381479-1.00003-4.
G. E. Güraksın, H. Haklı, and H. U˘guz, "Support Vector Machines Classification based on Particle Swarm Optimization for Bone Age Determination," Applied Soft Computing, vol. 24, pp. pp. 597-602, 2014. doi: https://doi.org/10.1016/j.asoc.2014.08.007.
B. Yang, R. Gong, L. Wang, and S. Yang, "Support vector machine in image recognition of nursing methods for critically ill blood purification," Microprocessors and Microsystems, p. 103398, 2020/11/08/ 2020. doi: https://doi.org/10.1016/j.micpro.2020.103398.
R. Reshma, V. Sowmya, and K. P. Soman, "Dimensionality Reduction Using Band Selection Technique for Kernel Based Hyperspectral Image Classification," Procedia Computer Science, vol. 93, pp. 396-402, 2016/01/01/ 2016. doi: https://doi.org/10.1016/j.procs.2016.07.226.
DOI: https://doi.org/10.15408/jti.v15i1.25254 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Iis Afrianty, Dewi Nasien, Habibollah Haron
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.
JTI Visitor Counter: View JTI Stats