ANALISIS SENTIMEN MASYARAKAT TERHADAP VAKSINASI COVID-19 BERDASARKAN OPINI PADA TWITTER MENGGUNAKAN ALGORITMA NAIVE BAYES
Abstract
Corona virus is a group of viruses that infect the respiratory tract. This virus is known as Covid-19 which is known to have originated from China, which appeared in December 2019. In early March 2020, the first time the Covid-19 virus was reported to have entered Indonesia and spread to all provinces in Indonesia. The steps taken by the government to prevent the spread of the virus include creating a Covid-19 vaccination program where this information can be obtained through social media, including Twitter, which is a popular social media in Indonesia and is currently a trending topic. Its users are free to have an opinion or opinion through posts or comments. There are various kinds of opinions from the public, there are positive, neutral, and negative opinions about the Covid-19 vaccination program.Therefore, this study can be formulated that how to respond to Indonesian public opinion on the Covid-19 vaccination program using data taken from Twitter social media and conducting sentiment analysis using the Naive Bayes algorithm by classifying positive, neutral, and negative sentiments from Twitter using keywords. namely “Vaccine” and “Covid”.The results of the research that have been carried out show that the level of system accuracy in the application of the Naïve Bayes algorithm gets an accuracy value of 78% and testing using the k-fold cross validation method gets an accuracy value of 80%.
Keywords
Full Text:
PDFReferences
N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” J. Sist. dan Inform., vol. 15, no. 1, pp. 27–29, 2020.
N. Hardi, Y. Alkahfi, P. Handayani, W. Gata, and M. R. Firdaus, “Analisis Sentimen Physical Distancing pada Twitter Menggunakan Text Mining dengan Algoritma Naive Bayes Classifier,” Sistemasi, vol. 10, no. 1, p. 131, 2021.
M. D. Mulyawan and I. Slamet, “ANALISIS SENTIMEN TERKAIT VAKSIN COVID-19 PADA DATA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE,” pp. 133–139, 2021.
D. A. Muthia and H. Rachmi, “Implementation of Text Mining in Predicting Consumer Interest on Digital Camera Products,” 2018 6th Int. Conf. Cyber IT Serv. Manag., no. Citsm, pp. 1–7, 2018.
S. Hikmawan, A. Pardamean, and S. N. Khasanah, “Sentimen Analisis Publik Terhadap Joko Widodo terhadap wabah Covid-19 menggunakan Metode Machine Learning,” J. Kaji. Ilm., vol. 20, no. 2, pp. 167–176, 2020.
F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” Heal. Inf. Manag. J., vol. 8, no. 2, pp. 100–109, 2020.
J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques, Computers. Amsterdam: Elsevier, 2011.
R. L. Hale, “Cluster analysis in school psychology: An example,” J. Sch. Psychol., vol. 19, no. 1, pp. 51–56, 1981.
S. Taheri, J. Yearwood, M. Mammadov, and S. Seifollahi, “Attribute weighted Naive Bayes classifier using a local optimization,” Neural Comput. Appl., vol. 24, no. 5, pp. 995–1002, 2014.
A. Novantirani, M. K. Sabariah, and V. Effendy, “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine,” e-Proceeeding Eng., vol. 2, no. 1, pp. 1–7, 2015
DOI: https://doi.org/10.15408/jti.v14i2.24024 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Zulfikar Firmansyah Firmansyah, Nila Feby Puspitasari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.
JTI Visitor Counter: View JTI Stats