Muhammad Rifqi, Suharjito Suharjito


Classification of oil palm fresh fruit bunch (FFB) based on maturity is very important for estimating oil content. Traditional methods using human vision to observe color changes during ripening and counting the number of fruits that fall from FFB are not effective. Research for neural architectures to design new network bases and improve them resulted in a set of models called EfficientNet. The most important function is the optimizer. This function repeatedly increases the parameters to reduce loss. In this study, the EfficientNetB0 and B1 models were developed to detect oil palm maturity into 6 classes, Raw, Ripe, Overripe, Underripe, abnormal, and empty bunch using optimizer RMSprop and SGD. From the research results, obtained the highest accuracy using the RMSprop optimizer of 0.9955 using the EfficientNetB0 model and 0.9949 using the EfficientNetB1 model. While using the SGD optimizer, the accuracy achieved is 0.918 using the EfficientNetB0 model and 0.9079 using the EfficientNetB1 model


Maturity, Palm oil, EfficientNet, Optimizer

Full Text:



I. Pahan, Panduan Teknis Budidaya Kelapa Sawit Untuk Praktisi Perkebunan, I. Jakart: Penebar Swadaya, 2015.

S. ITN, 58 Kiat Meningkatkan Produktivitas dan Mutu Kelapa Sawit, I. Jakarta: Penebar Swadaya, 2008.

A. W. Krisdiarto, L. Sutiarso, and K. H. Widodo, “Optimasi Kualitas Tandan Buah Segar Kelapa Sawit dalam Proses Panen-Angkut Menggunakan Model Dinamis,” Agritech, vol. 37, no. 1, p. 102, 2017, doi: 10.22146/agritech.17015.

Z. Ibrahim, N. Sabri, and D. Isa, “Palm oil fresh fruit bunch ripeness grading recognition using convolutional neural network,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 3–2, pp. 109–113, 2018.

M. Shiddiq, Fitmawati, R. Anjasmara, N. Sari, and Hefniati, “Ripeness detection simulation of oil palm fruit bunches using laser-based imaging system,” AIP Conf. Proc., vol. 1801, no. January 2017, 2017, doi: 10.1063/1.4973101.

H. Herman, A. Susanto, T. W. Cenggoro, S. Suharjito, and B. Pardamean, “Oil Palm Fruit Image Ripeness Classification with Computer Vision using Deep Learning and Visual Attention,” J. Telecommun. Electron. Comput. Eng., vol. 12, no. 2, pp. 21–27, 2020.

I. Bonet, F. Caraffini, A. Pena, A. Puerta, and M. Gongora, “Oil Palm Detection via Deep Transfer Learning,” 2020 IEEE Congr. Evol. Comput. CEC 2020 - Conf. Proc., 2020, doi: 10.1109/CEC48606.2020.9185838.

L. T. Duong, P. T. Nguyen, C. Di Sipio, and D. Di Ruscio, “Automated fruit recognition using EfficientNet and MixNet,” Comput. Electron. Agric., vol. 171, no. February, p. 105326, 2020, doi: 10.1016/j.compag.2020.105326.

M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.

R. V. Kumar Reddy, B. Srinivasa Rao, and K. P. Raju, “Handwritten Hindi Digits Recognition Using Convolutional Neural Network with RMSprop Optimization,” Proc. 2nd Int. Conf. Intell. Comput. Control Syst. ICICCS 2018, no. Iciccs, pp. 45–51, 2019, doi: 10.1109/ICCONS.2018.8662969.

I. Joshi, M. Desai, S. Bookseller, R. Mohod, C. N. Paunwala, and B. Vaidya, “Performance of Different Optimizers,” 2019 10th Int. Conf. Comput. Commun. Netw. Technol., pp. 1–7, 2019.

M. K. Shabdin, A. R. M. Shariff, M. N. A. Johari, N. K. Saat, and Z. Abbas, “A study on the oil palm fresh fruit bunch (FFB) ripeness detection by using Hue, Saturation and Intensity (HSI) approach,” IOP Conf. Ser. Earth Environ. Sci., vol. 37, no. 1, 2016, doi: 10.1088/1755-1315/37/1/012039.

N. Sabri, Z. Ibrahim, S. Syahlan, N. Jamil, and N. N. A. Mangshor, “Palm oil fresh fruit bunch ripeness grading identification using color features,” J. Fundam. Appl. Sci., vol. 9, no. 4S, p. 563, 2018, doi: 10.4314/jfas.v9i4s.32.

S. A. Ghazali, H. Selamat, Z. Omar, and R. Yusof, “Image Analysis Techniques for Ripeness Detection of Palm Oil Fresh Fruit Bunches,” Elektr. J. Electr. Eng., vol. 18, no. 3, pp. 57–62, 2019, doi: 10.11113/elektrika.v18n3.192.

A. Septiarini, H. Hamdani, H. R. Hatta, and A. A. Kasim, “Image-based processing for ripeness classification of oil palm fruit,” Proceeding - 2019 5th Int. Conf. Sci. Inf. Technol. Embrac. Ind. 4.0 Towar. Innov. Cyber Phys. Syst. ICSITech 2019, pp. 23–26, 2019, doi: 10.1109/ICSITech46713.2019.8987575.

N. F. Sulaiman, O. Pauline, L. W. Kiow, L. K. Huong, and G. S. Fong, “CCAM Communications in Computational and Applied Automatic Grading System for Oil Palm Fruit Ripeness,” Commun. Comput. Appl. Math., vol. 2, no. 1, pp. 7–11, 2020, [Online]. Available:

E. F. Himmah, M. Widyaningsih, and M. Maysaroh, “Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering,” J. Sains dan Inform., vol. 6, no. 2, pp. 193–202, 2020, doi: 10.34128/jsi.v6i2.242.

A. W. Setiawan and O. E. Prasetya, “Palm Oil Fresh Fruit Bunch Grading System Using Multispectral Image Analysis in HSV,” 2020 IEEE Int. Conf. Informatics, IoT, Enabling Technol. ICIoT 2020, pp. 85–88, 2020, doi: 10.1109/ICIoT48696.2020.9089431.

G. N. Elwirehardja, J. S. Prayoga, and Suharjito, “Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches,” Comput. Electron. Agric., vol. 188, no. March, p. 106359, 2021, doi: 10.1016/j.compag.2021.106359.

DOI: Abstract - 0 PDF - 0


Copyright (c) 2022 Muhammad Rifqi, Suharjito Suharjito

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur. 
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537

Creative Commons Licence
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at


JTI Visitor Counter: View JTI Stats

 Flag Counter