Addini Yusmar, Luh Kesuma Wardhani, Hendra Bayu Suseno


In 2018, the Ministry of Industry (Kemenperin) stated that the food and beverage sector contributed 6.34% of the national gross domestic product (GDP). Currently, culinary information can be easily found, both in print and online. The amount of information available sometimes makes people over-informed, making it difficult to choose a restaurant based on their preferences. To assist consumers in selecting a restaurant, we need a system that can provide several recommendations. This study aims to implement the item-based Collaborative Filtering method using the Adjusted Cosine Similarity algorithm on a restaurant recommendation system. The test was carried out with 40 samples from UIN Syarif Hidayatullah Jakarta using purposive sampling because the sample was selected based on specific criteria, and 40 respondents can be said to be correct because of the minimum number of respondents is 30. The accuracy test uses precision, and the determination of the error value uses MAE. The analysis of the research results used three scenarios, which are 5, 20, and 40 users. The third scenario produces the best precision and MAE values. Precision is better if the precision value is close to 1, and MAE is getting better if the MAE value is getting closer to 0. So it can be concluded that the Item-Based method with the Adjusted Cosine algorithm has the best accuracy and error values when the number of users grows.


Recommender system; Restaurant; Item based; Collaborative filtering; Adjusted cosine similarity

Full Text:



A. Naraya, “No Title,” 6 Januari, 2019. [Online]. Available:

R. A. Nugroho, “Prototipe Sistem Rekomendasi Menu Makanan dengan Pendekatan Contextual Model dan Multi-Criteria Decision Making,” vol. 10, no. 2, 2015.

A. B. A. Priyono, “Performa Apriori Dan Collaborative Filtering Untuk Sistem Rekomendasi,” vol. 21, no. 100, pp. 51–59, 2016.

M. Irfan, A. D. C, and F. H. R, “Sistem Rekomendasi: Buku Online Dengan Metode Collaborative Filtering,” J. Teknol. TECHNOSCIENTIA, vol. 7, no. 1, pp. 76–84, 2014.

Z. Muttaqin et al., “Implementasi User

Collaborative Filtering Untuk Rekomendasi Pembelian Barang Menggunakan Algoritma Cosine Similarity ( Studi Kasus : Web E-Commerce XYZ ).

Aryani, B. Susilo, and Y. Setiawan, “Perancangan Sistem Rekomendasi Pemilihan Cinderamata Khas Bengkulu Berbasis E-Marketplace,” vol. 7, no. 1, pp. 70–76, 2019.

G. Ferio, R. Intan, and S. Rostianingsih, “Sistem Rekomendasi Mata Kuliah Pilihan Menggunakan Metode User Based Collaborative Filtering Berbasis Algoritma Adjusted Cosine Similarity,” vol. Vol 7, No, 2019.

P. Yu, “Collaborative Filtering Recommendation Algorithm Based on Both User and Item.,” 2015 4th Int. Conf. Comput. Sci. Netw. Technol., vol. 01, 2015.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based Collaborative Filtering Recommendation Algorithms,” pp. 1–15, 2001.

L. A. M. Ramadhan, Sutardi, and J. Nangi, “Pembuatan Web E-Commerce Pada Toko Kenime Store Menggunakan Sistem Rekomendasi Berbasis Metode Collaborative Filtering Dengan Algoritma Adjusted Cosine Similarity,” vol. 3, no. 2, pp. 227–236, 2017.

A. E. Wijaya and D. Alfian, “Sistem Rekomendasi Laptop Menggunakan Collaborative Filtering Dan Content-Based Sistem Rekomendasi Laptop Menggunakan Collaborative Filtering Dan Content-Based Filtering,” vol. 12, no. 1, pp. 11–27, 2018.

D. E. Wibowo and R. Munir, “Sistem Rekomendasi Jual Beli Barang Dengan Memanfaatkan Metode Collaborative Filtering dan Basis Data Graf. Studi Kasus: Bukalapak. com,” 2013.

DOI: Abstract - 0 PDF - 0


  • There are currently no refbacks.

Copyright (c) 2021 Addini Yusmar, Luh Kesuma Wardhani, Hendra Bayu Suseno

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537

Creative Commons Licence
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at

JTI Visitor Counter: View JTI Stats

 Flag Counter