SISTEM INFERENSI FUZZY MAMDANI UNTUK PENGHITUNGAN BONUS KARYAWAN PT. ABC

Sherly Andini, Maria Ulfah Siregar, Shofwatul Uyun, Nurochman Nurochman

Abstract


A bonus in a company is an appreciation of the company for its employees for their dedication to work. Giving the bonus is sometimes prone to subjektives, not relevant to work pertformance, and etc. This is also impelemented in PT. ABC, which rewards employees for their performance. The calculation of employee bonuses at PT. ABC still uses spreadsheet tool so that the results of calculating employee bonuses tend to be subjective and be human error in inputting complex formula. Therefore, to get the suitable employee bonus calculation results, PT. ABC requires a specific computer system for the employee bonus calculation. This research uses Fuzzy Inference System Mamdani method because Mamdani method is often used for fuzzy logic control problems and is accordance with the process of input of human information. In Mamdani method, there are four stages, namely the formation of fuzzy sets, application of implications function, composition of rules and defuzzyfication. Our Mamdani method was designed upon 27 rules which is likely adding complexity and temptation on human. Calculations on a system are tidier and more structureable rather than on spreadsheet tool. The system which is based on web could run almost everywhere as long as there is internet connection. The results of this study indicate that computer calculations result the same as manual calculations by hand. Functionality testing show that the system is functioning 100% and the system access test shows that 60% of respondents strongly agree and 40% of respondents agree with the ease of the system.


Keywords


Decision Support System; Fuzzy Inference System; Mamdani Method; Employee Bonus; PT. ABC

Full Text:

PDF

References


Kasmawati, “Sumber Daya Manusia Sebagai Sumber Keunggulan Kompetitif,” Idaarah, vol. II, no. 2, 2018.

N. Febriany, “Aplikasi Metode Fuzzy Mamdani Dalam Penentuan Status Gizi Dan Kebutuhan Kalori Harian Balita Menggunakan Software MATLAB,” Jurnal EurekaMatika, vol. 5, no. 1, 2017.

R. Purwandito, H. Suyitno, and A. Alamsyah, “Penerapan Sistem Inferensi Fuzzy Metode Mamdani untuk Penentuan Jumlah Produksi Eggroll,” UNNES J. Math., vol. 8, no. 1, pp. 107–116, 2019.

E. Sonalitha, S. R. A., R. D. M., and M. Andarwati, “Pendukung Keputusan Penentuan Jumlah Order Menggunakan Fuzzy Mamdani,” MATICS, vol. 9, no. 1, pp. 80–85, 2017.

K. Yudhistiro and H. Pamuntjar, “Sistem Inferensi Fuzzy Mamdani untuk Penunjang Keputusan Penentuan Potensi Desa di Kabupaten Malang,” SMATIKA, vol. 9, no. 1, pp. 28–38, 2019.

I. Fitriani, “Sistem Penunjang Keputusan pada Solusi Penerimaan Beasiswa bagi Mahasiswa Menggunakan Fuzzy Mamdani,” String, vol. 2, no. 3, pp. 289–298, 2018.

L. P. Ayuningtias, M. Irfan, and Jumadi, “Analisa Perbandingan Logic Fuzzy Metode Tsukamoto, Sugeno, dan Mamdani (Studi Kasus: Prediksi Jumlah Pendaftar Mahasiswa Baru Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Gunung Djati Bandung),” J. Tek. Inform., vol. 10, no. 1, pp. 9–16, 2017.

Fahmizal, T. R. Orlando, B. B. Murti, M. Budiyanto, and A. Mayub, “Kendali Logika Fuzzy pada Sistem Electronic Control Unit (ECU) Air Conditioner Mobil,” JTIIK, vol. 6, no. 1, pp. 25–32, 2019.

H. Junaedi, J. Pranata, M. Hariadi, and I. K. E. Purnama, “Penempatan Posisi Multi Kamera Berdasarkan Gaya Sutradara Berbasis Logika Fuzzy,” JTIIK, vol. 5, no. 6, pp. 687–696, 2018.

S. N. Endah, P. S. Sasongko, and H. A. Wibawa, “Content-based Image Retrieval Using Expression Sensitivity by Fuzzy Inference System,” Kursor, vol. 8, no. 1, pp. 21–32, 2015.

R. A. Yunmar, “Hybrid Intrusion Detection System Using Fuzzy Logic Inference Engine for SQL Injection Attack,” Kursor, vol. 9, no. 1, pp. 83–94, 2018.

N. Sugianti, Y. Galuh, S. Fatia, and K. F. H. Holle, “Deteksi Serangan Distributed Denial of Services (DDOS) Berbasis HTTP Menggunakan Metode Fuzzy Sugeno,” Jiska, vol. 4, no. 3, pp. 18–26, 2020.

T. Tundo and E. I. Sela, “Application of The Fuzzy Inference System Method to Predict The Number of Weaving Fabric Production,” IJID, vol. 7, no. 1, pp. 21–29, 2018.

Guru99, “Alpha Testing Vs Beta Testing: What’s the Difference?,” 2020. [Online]. Available: https://www.guru99.com/alpha-beta-testing-demystified.html. [Accessed: 08-Sep-2020].




DOI: https://doi.org/10.15408/jti.v14i2.14180 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Sherly Andini, Maria Ulfah Siregar, Shofwatul Uyun, Nurochman Nurochman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

3rd Floor, Dept. of Informatics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta
Jl. Ir. H. Juanda No.95, Cempaka Putih, Ciputat Timur.
Kota Tangerang Selatan, Banten 15412
Tlp/Fax: +62 21 74019 25/ +62 749 3315
Handphone: +62 8128947537
E-mail: jurnal-ti@apps.uinjkt.ac.id


Creative Commons Licence
Jurnal Teknik Informatika by Prodi Teknik Informatika Universitas Islam Negeri Syarif Hidayatullah Jakarta is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uinjkt.ac.id/index.php/ti.

JTI Visitor Counter: View JTI Stats

 Flag Counter