Bacteriocin Activity of Lactic Acid Bacteria from Giant Prawn (Macrobrachium rosenbergii)

Della Meysari, Henny Helmi, Rahmad Lingga

Abstract


Abstract

Food is one of the necessities of life. Food is often added with preservatives such as chemicals that harm human health. One of the safe natural preservatives is bacteriocin compounds. Bacteriocins can be produced by lactic acid bacteria (LAB). These bacteriocins have known as Generally Recognized as Safe (GRAS) status. This study aimed to isolate and identify BAL from the digestive tract of giant shrimp (Macrobrachium rosenbergii), as well as test the ability of the bacteriocin produced to the proteolytic enzyme, temperature, pH, and salt. The research methods used were bacterial isolation, bacterial characterization, hemolysis test, bacteriocin antibacterial activity tests, proteolytic enzyme influence tests on bacteriocin activity, temperature, pH, and salt content tests on bacteriocin activity, and antibiotic tests. The research results showed that there were 37 LAB isolates and there were 7 isolates that produced bacteriocins. The LAB isolated from the digestive tract of giant prawns is Gram-positive bacteria in the form of bacilli, catalase-negative, gamma hemolytic, methyl red positive, and homofermentative. The bacteriocins can inhibit the pathogenic bacteria Staphylococcus aureus and Escherichia coli and be degraded by the Protease-K enzyme. Moreover, the bacteriocins have the characteristics of being stable at acid to neutral pH (pH 2–7), stable at low and high temperatures (4–100 °C), and stable under conditions with a salt content of 2–6.5%. The results of the identification of LAB belonged to the Lactobacillus genus.

Abstrak

Makanan merupakan kebutuhan pokok dalam kehidupan sehari-hari manusia. Makanan sering kali ditambahkan bahan pengawet seperti bahan kimia yang berpengaruh buruk terhadap kesehatan manusia. Salah satu alternatif bahan pengawet alami yang aman bagi kesehatan manusia adalah senyawa bakteriosin. Bakteriosin dapat dihasilkan dari bakteri asam laktat (BAL). Bakteriosin yang diproduksi oleh BAL sudah berstatus Generally Recognized as Safe (GRAS). Penelitian ini bertujuan untuk mengisolasi dan mengidentifikasi BAL dari saluran pencernaan udang galah (Macrobrachium rosenbergii), serta menguji kemampuan bakteriosin yang dihasilkan terhadap enzim proteolitik, suhu, pH dan kadar garam. Metode penelitian yang dilakukan adalah isolasi bakteri, karakterisasi bakteri, uji hemolisis, uji aktivitas antibakteri bakteriosin, uji pengaruh enzim proteolitik, suhu, pH dan kadar garam terhadap aktivitas bakteriosin. Hasil isolasi terdapat 37 isolat BAL dan 7 isolat yang menghasilkan bakteriosin. BAL yang diisolasi dari saluran pencernaan udang galah merupakan bakteri Gram positif berbentuk basil, katalase negatif, gamma hemolisis, methyl red positif dan homofermentatif. Bakteriosin mampu menghambat bakteri patogen Staphylococcus aureus dan Escherichia coli, dapat didegradasi oleh enzim Protease-K, stabil pada pH asam hingga netral (pH 2–7), stabil pada suhu rendah maupun tinggi (4°–100 °C) dan stabil pada kondisi dengan kadar garam 2–6,5%.  Hasil identifikasi BAL dari usus udang galah yaitu bakteri termasuk dalam Genus Lactobacillus.


Keywords


Bacteriocins; Giant prawns; Lactic acid bacteria; Lactobacillus; Macrobrachium rosenbergii; Bakteriosin; Bakteri asam laktat; Udang galah

Full Text:

PDF

References


Adawyah, R., Asyah, S., Puspitasari, F., & Candra. (2017). Penambahan ekstrak kepala udang galah (Macrobrachium Rosenbergii De Man) untuk meningkatkan kandungan protein pada produk olahan stick. Fish Scientiae, 7(1), 62-72.

Adibrata, S., Lingga, R., & Fatimah, S. (2022). Implementation of blue economy by managing prawn potency in the freshwater through assisting the comparative study of STC agro Bangka Belitung small enterprise. Abdimas Galuh: Jurnal Pengabdian Masyarakat, 4(2), 1140-1151.

Ahsaniyah, S., Helmi, H., & Lingga, R. (2023). The potential of lactic acid bacteria isolates from merawang chicken intestine typical of Bangka Belitung as probiotic candidates, BioLink: Jurnal Biologi Lingkungan, Industri dan Kesehatan, 10(1), 87-97. doi: 10.31289/biolink.v10i1.9353.

Aktas, E., & Yigit, N. (2015). Hemolytic Activity of dermatophytes species isolated from clinical specimens. Journal de Mycologie Medicale, 25, e25-e30. doi: 10.1016/j.mycmed.2014.10.014.

Andarilla, W., Sari, R., & Apridamayanti, P. (2018). Optimasi aktivitas bakteriosin yang dihasilkan oleh Lactobacillus casei dari sotong kering. Jurnal Pendidikan Informatika dan Sains, 7, 187. doi: 10.31571/saintek.v7i2.1041.

Azahar, N., Iehata, S., Fadhil, F., Bulbul, M., & Kader, Md. A. (2018). Antimicrobial activities of lactic acid bacteria isolated from Malaysian prawn, Macrobrachium rosenbergii. Journal of Environmental Biology, 39, 821-824.

Buntin, N., Chanthachum, S., & Hongpattarakere, T. (2008). Screening of lactic acid bacteria from gastrointestinal tracts of marine fish for their potential use as probiotics. Songklanakarin Journal of Science and Technology, 30, 141-148.

Campedelli, I., Mathur, H., Salvetti, E., Clarke, S., Rea, M. C., Torriani, S., … O’Toole, P.W. (2019). Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Applied and Environmental Microbiology, 85, 1-21. doi: 10.1128/AEM.01738-18.

Carlier, L., Joanne, P., Khemtémourian, L., Lacombe, C., Nicolas, P., El Amri, C., & Lequin, O. (2015). Investigating the role of gxxxg motifs in helical folding and self-association of plastics, gly/leu-rich antimicrobial peptides. Biophysical Chemistry, 196, 40-52. doi: 10.1016/j.bpc.2014.09.004.

Cheriet, S., Lengliz, S., Romdhani, A., Hynds, P., Abbassi, M. S., & Ghrairi, T. (2023). Selection and characterization of bacteriocinogenic lactic acid bacteria from the intestine of gilthead seabream (Sparus aurata) and whiting fish (Merlangius merlangus): Promising strains for aquaculture probiotic and food bio-preservation. Life, 13, 1-15. doi: 10.3390/life13091833.

Darbandi, A., Asadi, A., Ari, M. M., Ohadi, E., Talebi, M., Zadeh, M. H., … Kakanj, M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36, 1-40. doi: 10.1002/jcla.24093.

de Bruyn, M. (2005). Inferring biogeography from the evolutionary history of the giant freshwater prawn (Macrobrachium rosenbergii) (Doctoral dissertation, Queensland University of Technology, Brisbane, Australia). Retrieved from https://eprints.qut.edu.au/16215/1/Mark_de_Bruyn_Thesis.pdf.

Dec, M., Urban-Chmiel, R., Stȩpień-Pyśniak, D., & Wernicki, A. (2017). Assessment of Antibiotic Susceptibility in Lactobacillus Isolates from Chickens. Gut Pathogens, 9, 1-16. doi: 10.1186/s13099-017-0203-z.

Dündar, H. (2006). Characterization and purification of a bacteriocin produced by Leuconostoc mesenteroides subsp. cremoris (Doctoral dissertation, The Graduate School of Natural and Applied Sciences of Middle East Technical University, Turki). Retrieved from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=97cabcdd04286b85845688d202ed1920e5d96523.

Fajrilian, B. (2017). Analisis kelimpahan udang galah (Macrobrachium rosenbergii) di Sungai Menduk Kabupaten Bangka. Jurnal Akuatik, 1, 1-8.

Feliatra, F., Muchlisin, Z. A., Teruna, H. Y., Utamy, W. R., Nursyirwani, N., & Dahliaty, A. (2018). The potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to Vibrio, Pseudomonas, and Aeromonas species on fish. F1000Research, 7, 1-18. doi: 10.12688/F1000RESEARCH.13958.1.

Gavahian, M., Tiwari, B. K., Chu, Y. H., Ting, Y., & Farahnaky, A. (2019). Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends in Food Science and Technology, 86, 328-339. doi: 10.1016/j.tifs.2019.02.022.

Golshahi, M., Pirnia, M. M., Jafari, P., Ebrahimi, E., Tafvizi, F., Dameshghian, M., & Ebrahimi, M. T. (2021). Characterization of effective native lactic acid bacteria as potential oral probiotics on growth inhibition of Streptococcus mutans. Applied Food Biotechnology, 8, 201-212. doi: 10.22037/afb.v8i3.33704.

Hamidah, M. N., Rianingsih, L., & Romadhon, R. (2019). Aktivitas antibakteri isolat bakteri asam laktat dari peda dengan jenis ikan berbeda terhadap E. coli dan S. aureus. Jurnal Ilmu dan Teknologi Perikanan, 1, 11-21. doi: 10.14710/jitpi.2019.6742.

Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E., & Castrejón-Jiménez, N. S. (2021). Bacteriocins from lactic acid bacteria. a powerful alternative to antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals, 11. doi: 10.3390/ani11040979.

Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey's manual of determinative bacteriology. Baltimore: Lippincott Williams & Wilkins.

Ibrahim, O. O. (2019). Classification of antimicrobial peptides bacteriocins, and the nature of some bacteriocins with potential applications in food safety and bio-pharmaceuticals. EC Microbiology, 15, 591-608.

Inetianbor, J., Yakubu, J., Stephen, E. C. (2015). Effects of food additives and preservatives on man-a review. Asian Journal of Science and Technology, 6, 1118-1135.

Jiang, Y. H., Xin, W. G., Zhang, Q. L., Lin, L. B., & Deng, X. Y., 2022. A novel bacteriocin against Shigella flexneri from Lactiplantibacillus plantarum isolated from tilapia intestine: Purification, antibacterial properties, and antibiofilm activity. Frontiers in Microbiology, 12, 1-13. doi: 10.3389/fmicb.2021.779315.

Kasi, P. D., Ariandi., & Mutmainnah, H. (2017). Uji antibakteri isolat bakteri asam laktat yang diisolasi dari limbah cair sagu terhadap bakteri patogen. Jurnal Biotropika, 5, 97-101. doi: 10.1109/UMEDIA.2008.4570869.

Kusmarwati, A., Arief, F. R., & Haryati, S. (2014). Eksplorasi bakteriosin dari bakteri asam laktat asal rusip Bangka dan Kalimantan. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 9, 29. doi: 10.15578/jpbkp.v9i1.97.

Manurung, A. P., Yusanti, I. A., & Haris, R. B. K. (2018). Tingkat pertumbuhan dan kelangsungan hidup , pada pembesaran. Jurnal Ilmu-ilmu Perikanan dan Budidaya Perairan, 13, 27-36.

Mohamad, N., Manan, H., Sallehhuddin, M., Musa, N., & Ikhwanuddin, M. (2020). Screening of lactic acid bacteria isolated from giant freshwater prawn (Macrobrachium rosenbergii) as potential probiotics. Aquaculture Reports, 18, 100523. doi: 10.1016/j.aqrep.2020.100523.

Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis, and applications against uropathogens: A mini-review. Molecules, 22. doi: 10.3390/molecules22081255.

Obi, C. N., Achi, O. K., & Nwachukwu, E. (2018). Bio-preservative activities of partially purified bacteriocin extracts of Lactobacillus mindensis tmw and Lactobacillus tucceti set 5920 isolated from Nigerian fermented foods. European Journal of Nutrition & Food Safety, 8, 266-283. doi: 10.9734/ejnfs/2018/44097.

Plavec, T. V., & Berlec, A. (2020). Safety aspects of genetically modified lactic acid bacteria. Microorganisms, 8, 1-21. doi: 10.3390/microorganisms8020297.

Pratiwi, S. T., Paryati, S. P. Y., Raja, E. N. L., & Andana, P. (2022). Perbandingan efektivitas bakteriosin Lactobacillus acidophillus atcc 4356 dengan nisin pada pertumbuhan Salmonella typhi atcc 6539. Medika Kartika Jurnal Kedokteran dan Kesehatan, 5(2), 162–174. doi: 10.35990/mk.v5n2.p162-174.

Prudêncio, C. V., dos Santos, M. T., & Vanetti, M. C. D. (2015). Strategies for the use of bacteriocins in gram-negative bacteria: Relevance in food microbiology. Journal of Food Science and Technology, 52, 5408-5417. doi: 10.1007/s13197-014-1666-2.

Putri, I., Jannah, N., & Purwantisari, S. (2020). Isolation and characterization of lactic acid bacteria from Apis mellifera and their potential as antibacterial using in vitro test against the growth of Listeria monocytogenes and Escherichia coli. NICHE Journal of Tropical Biology, 3, 26-34.

Ramadhani, L. (2021). Efektivitas pemanfaatan ekstrak daun belimbing wuluh (Averrhoa bilimbi L) untuk pengawet ikan tongkol sebagai penunjang mata kuliah gizi dan kesehatan (Undergraduate thesis, Ar-rainy State Islamic University, Banda Aceh, Indonesia). Retrieved from https://repository.ar-raniry.ac.id/id/eprint/19053/1/Linda%20Ramadhani,%20160207078,%20FTK,%20PBL,%20082276069029.pdf.

Rasheed, H. A., Tuoheti, T., Zhang, Y., Azi, F., Tekliye, M., & Dong, M. (2020). Purification and partial characterization of a novel bacteriocin produced by bacteriocinogenic Lactobacillus fermentum bz532 isolated from Chinese fermented cereal beverage (bozai). LWT, 124, 109113. doi: 10.1016/j.lwt.2020.109113.

Romadhon., Subagiyo., & Sebastian, M. (2012). Isolasi dan karakterisasi bakteri asam laktat dari usus udang penghasil bakteriosin sebagai agen antibakteria pada produk-produk hasil perikanan. Jurnal Saintek Perikanan, 8, 59-64.

Saad, M., Abdelsamei, H., Ibrahim, E., Abdou, A., & El Sohaimy, S. (2015). Effect of pH, heat treatments, and proteinase k enzyme on the activity of Lactobacillus acidophilus bacteriocin. Benha Veterinary Medical Journal, 28, 210-215. doi: 10.21608/bvmj.2015.32744.

Sari, R., Anita, C., Radji, M., & Malik, A. (2011). Skrining bakteriosin dari beberapa galur bakteri asam laktat isolat lokal genus Streptococcus dan Weissella. Jurnal Ilmu Kefarmasian Indonesia, 9, 116-121.

Sari, R., Deslianri, L., & Apridamayanti, P. (2016). Skrining aktivitas antibakteri bakteriosin dari minuman ce hun tiau. Pharmaceutical Sciences and Research, 3, 88-96. doi: 10.7454/psr.v3i2.3272.

Setiawan, A., Sari, Y. A., & Rahayudi, B. (2021). Segmentasi citra makanan menggunakan clustering improved k-means untuk estimasi sisa makanan. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(10), 4400-4407.

Sidabutar, A. R., Feliatra., & Dahliaty, A. (2015). Uji aktivitas antimikroba bakteriosin dari bakteri probiotik yang diisolasi dari udang windu (Penaeus monodon Fabricus). Jurnal Online Mahasiswa Bidang Perikanan dan Ilmu Kelautan, 2, 1-13.

Silva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology, 9. doi: 10.3389/fmicb.2018.00594.

Stefańska, I., Kwiecień, E., Jóźwiak-Piasecka, K., Garbowska, M., Binek, M., & Rzewuska, M. (2021). Antimicrobial susceptibility of lactic acid bacteria strains of potential use as feed additives - the basic safety and usefulness criterion. Frontiers in Veterinary Science, 8, 1-11. doi: 10.3389/fvets.2021.687071.

Sujana, I. G. A., Antara, N. S., & Gunam, I. B. W. (2020). Skrining isolat bakteri asam laktat penghasil bakteriosin yang diisolasi dari asinan rebung bambu tabah dan ketahanannya terhadap panas. Jurnal Rekayasa dan Manajemen Agroindustri, 8, 615. doi 10.24843/jrma.2020.v08.i04.p15.

Sukarya, I. B. J., Pratiwi, I. D. P. K., Arihantana, N. M. I. H., & Puspawati, N. N. (2021). Ketahanan isolat bakteri asam laktat indigenus kombucha dan dadih terhadap antibiotik. Jurnal Ilmu dan Teknologi Pangan (ITEPA), 10, 734. doi: 10.24843/itepa.2021.v10.i04.p18.

Sukmawati, S., Sipriyadi., Yunita, M., Dewi, N. K., & Noya, E. D. (2022). Analysis of bacteriocins of lactic acid bacteria isolated from fermentation of reborn shrimp (Acetes sp.) in South Sorong, Indonesia as antibacterial agents. Biodiversitas, 23, 3852-3859. doi: 10.13057/biodiv/d230763.

Suwayvia, N. (2017). Produksi bakteriosin asal Lactobacillus plantarum fncc 0020 sebagai antimikroba dan stabilitasnya pada variasi suhu pemanasan, suhu penyimpanan dan ph (Undergraduate thesis, Maulana Malik Ibrahim Islamic University, Malang, Indonesia). Retrieved from http://etheses.uin-malang.ac.id/5940/.

Thakkar, P., Modi, H. A., & Prajapati, J. B. (2015). Isolation, characterization and safety assessment of lactic acid bacterial isolates from fermented food products India. International Journal of Current Microbiology and Applied Sciences, 4, 713-723.

Todorov, S. D., Popov, I., Weeks, R., & Chikindas, M. L. (2022). Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: Benefits, challenges, concerns. Foods, 11, 1-21. doi: 10.3390/foods11193145.

Verluyten, J., Messens, W., & De Vuyst, L. (2004). Sodium chloride reduces the production of curvacin a, a bacteriocin produced by Lactobacillus curvatus strain lth 1174, originating from fermented sausage. Applied and Environmental Microbiology, 70, 2271-2278. doi: 10.1128/AEM.70.4.2271-2278.2004.

Wahongan, A. S., Simbala, Y., & Gosal, V.Y. (2021). Strategi mewujudkan keamanan pangan dalam upaya perlindungan konsumen. LexEtSocietatis, 9, 1-26.

Wardani, P., & Feliatra., & Dahliaty, A. (2015). The bacteriocin antimicrobial test activity of probiotic bacteria isolated from giant prawns (Macrobrachium rosenbergii). Journal Online Mahasiswa Fakultas Perikanan dan Ilmu Kelautan Universitas Riau, 1, 1-10. doi: 10.21608/pshj.2022.250026.

Yap, P. G., Lai, Z. W., & Tan, J. S. (2022). Bacteriocins from lactic acid bacteria: Purification strategies and applications in food and medical industries: A review. Beni-Suef University Journal of Basic and Applied Sciences, 11, 1-18. doi: 10.1186/s43088-022-00227-x.

Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M., & Noskova, S. (2020). Overview of global trends in classification, methods of preparation, and application of bacteriocins. Antibiotics, 9, 1-21. doi: 10.3390/antibiotics9090553.




DOI: https://doi.org/10.15408/kauniyah.v1i1.38124 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120