Effect of EM4 (Effective Microorganism 4) on Growth and Productivity of Cucumber (Cucumis sativus L.)

Ratna Yuniati, Margaretta Elsa Damayanti, Wisnu Wardhana

Abstract


Abstract

Cucumber (Cucumis sativus L.) is a nutritious and healthy vegetable that is commonly consumed by Indonesian people. To fulfill self-sufficiency for household scale needs during the COVID-19 pandemic, cucumber cultivation can be carried out in home gardens, using containers such as polybags. Growing cucumbers on limited land requires a carefully optimized planting media composition by applying Effective Microorganism 4 (EM4) to the polybag media when planting. The research has been conducted which aims to determine the best EM4 dosage for the growth and productivity of cucumbers. The study used a Randomized Block Design consisting of control and three treatment doses of 10% concentration EM4, namely 20, 40, and 60 mL per polybag with six replications. The planting media used is a mixture of loam soil and goat manure. NPK fertilizer is given as an additional nutrient. The EM4 application is done by pouring it every eight days into the planting media in polybags. The results showed an increase in growth parameters and productivity of cucumber plants namely plant height, leaf chlorophyll content, time of flower emergence, number of flowers, and number of flowers that form fruit. 40 mL EM4 is the dose that showed the highest growth and productivity.

Abstrak

Mentimun (Cucumis sativus L.) merupakan sayuran bergizi dan menyehatkan yang banyak dikonsumsi masyarakat Indonesia. Untuk memenuhi swasembada kebutuhan skala rumah tangga di masa pandemi COVID-19, budidaya mentimun dapat dilakukan di pekarangan rumah, dengan menggunakan wadah polybag. Menanam mentimun di lahan terbatas memerlukan optimalisasi komposisi media tanam secara cermat dengan menerapkan Effective Microorganism 4 (EM4) pada media dalam polybag. Telah dilakukan penelitian yang bertujuan untuk mengetahui dosis EM4 terbaik untuk pertumbuhan dan produktivitas tanaman mentimun. Penelitian menggunakan Rancangan Acak Kelompok yang terdiri atas kontrol dan tiga perlakuan dosis EM4 konsentrasi 10% yaitu 20, 40, dan 60 mL per polybag dengan enam ulangan. Media tanam yang digunakan adalah campuran tanah lempung dan kotoran kambing. Pupuk NPK diberikan sebagai unsur hara tambahan. Penerapan EM4 dilakukan dengan cara disiram setiap delapan hari sekali ke dalam media tanam di polybag. Hasil penelitian menunjukkan adanya peningkatan parameter pertumbuhan dan produktivitas tanaman mentimun yaitu tinggi tanaman, kandungan klorofil daun, waktu munculnya bunga, jumlah bunga, dan jumlah bunga yang membentuk buah. Dosis yang menunjukkan pertumbuhan dan produktivitas tertinggi adalah 40 mL EM4.


Keywords


Cucumber; Cucumis sativus; Effective Microorganism 4; Mentimun

Full Text:

PDF

References


Abdulkareem, M. O., Olukotun, N., Sam, A. R. M., Lim, N. H. A. S., & Olukotun, A. (2020). Biogenic approach for concrete durability and sustainability using effective microorganisms: A review. Construction and Building Materials, 261(119664), 1-9. doi 10.1016/j.conbuildmat.2020.119664.

Arnon, D. I. (1949). Cooper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.

Bonilla, N., Gutiérrez-Barranquero, J. A., de Vicente, A., & Cazorla, F. M. (2012). Enhancing soil quality and plant health through suppressive organic amendments. Diversity, 4, 475-491.

Borowiak, K., Wolna-Maruwka, A., Niewiadomska, A., Budka, A., Schroeter-Zakrzewska, A., & Stasik, R. (2021). The effects of various doses and types of effective microorganism applications on microbial and enzyme activity of medium and the photosynthetic activity of scarlet sage. Agronomy, 11(603), 1-13.

Changade, J. V., & Ulemale, A. H. (2015). Rich source of neutraceuticle: Cucumis sativus (cucumber). International Journal of Ayurveda and Pharma Research, 3(7), 93-96.

Chantal, K., Shao, X. H., Jing, B., Yuan, Y., Hou, M., & Liao, L. (2013). Effects of effective microorganisms (em) and bio-organic fertilizers on the growth parameters and yield quality of flue-cured tobacco (Nicotiana tabacum). Journal of Food Agriculture and Environment, 11(2), 1212-1215.

Condor_Golec, A. F., Perez, P. G., & Lokare, C. (2007). Effective microorganisms: Myth or reality? The Peruvian Journal of Biology, 14, 315-319.

Cortleven, A., & Schmülling, T. (2015). Regulation of chloroplast development and function by cytokinin. Journal of Experimental Botany, 66(16), 4999-5013.

Diver, S. (2001). Nature farming and effective microorganisms. rhizosphere ii: Publications, resource lists, and web links from Steve Diver. (updated 2001, Oct 11; accessed 2002, August 27). Retrieved from http://ncatark.uark.edu/~steved/Nature-Farm-EM.html.

El Kiyumi, S. S. S., Maalim, M. K., Suleiman, R., & Bakari, S. S. (2017). Influence of effective microorganisms on qualities of tomatoes (Lycopersicon esculentum) grown on tropical loam soil. Journal of Natural Sciences Research, 7(14), 53-56.

Higa, T., & Parr, J. F. (1994). Beneficial and effective microorganisms for a sustainable agriculture and environment. International Nature Farming Research Center Atami, 1.

Hu, J., Li, C., Wen, Y., Gao, X., Shi, F., & Han L. (2018). Spatial distribution of spad value and determination of the suitable leaf for n diagnosis in cucumber. IOP Conference Series: Earth and Environmental Science, 108(022001), 1-6.

Iriti, M., Scarafoni, A., Pierce, S., Castorina, G., & Vitalini, S. (2019.) Soil application of effective microorganisms maintains leaf photosynthetic efficiency and increases seed yield and quality traits of bean (Phaseolus vulgaris L.) plants grown on different substrates. International Journal of Molecular Science, 20(2327), 1-9.

Jang, S. J., Park, H. W., & Kuk, Y. I. (2021). Application of various extracts enhances the growth and yield of cucumber (Cucumis sativus L.) without compromising the biochemical content. Agronomy, 11(3), 505. doi: 10.3390/agronomy11030505.

Javaid, A. (2010). Beneficial microorganisms for sustainable agriculture. In E. Lichtfouse (Eds.), Genetic engineering, biofertilisation, soil quality and organic farming sustainable agriculture reviews. Berlin, German: Springer International Publishing.

Javaid, A., & Bajwa, R. (2011). Field evaluation of effective microorganisms (em) application for growth, nodulation, and nutrition of mung bean. Turk Tarim ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 35, 443-452.

Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. (2021). Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy, 11(2010), 1-25.

Joshi, H., Bisnoi, S., Choudhary, P., & Mundra, S. L. (2019). Role of effective microorganisms (em) in sustainable agriculture. International Journal of Current Microbiology and Applied Sciences, 8(3), 172-181.

Karamina, H., Indawan, E., Murti, A. T., & Mujoko, T. (2020). Respons pertumbuhan dan hasil tanaman mentimun terhadap aplikasi pupuk npk dan pupuk organik cair kaya fosfat. Jurnal Kultivasi, 19(2), 1150-1155.

Khaliq, A., Abbasi, M. K., & Hussain, T. (2006). Effect of integrated use of organic and inorganic nutrient sources with effective microorganisms (em) on seed cotton yield in Pakistan. Bioresource Technology, 97, 967-972.

Kumari, A., & Chaudhary, D. R. (2020). Engineered microbes and evolving plastic bioremediation technology. In V. C. Pandey, & V. Singh (Eds.), Bioremediation of pollutants: From genetic engineering to genome engineering. Amsterdam, Netherlands: Elsevier, Inc.

Latifa, R., Hadi, S., & Nurrohman, E. (2019). The exploration of chlorophyll content of various plants in the city forest of Malabar Malang. Bioedukasi, 17(2), 50-62.

Lestari, S. U., & Andrian, A. (2017). Effects of urine cow dosage on growth and production of sorghum plant (Sorghum bicolor L.) on peat land. IOP Conference Series: Earth and Environmental Science, 97(012052). doi: 10.1088/1755-1315/97/1/012052.

Maicas, S. (2020). The role of yeasts in fermentation processes. Microorganisms, 8(1142), 1-8.

Olle, M., & Williams, I. H. (2015). Effective microorganisms and their influence on vegetable production – a review. Journal of Horticultural Science & Biotechnology, 88(4), 380-386.

Ostertagová, E., & Ostertag, O. (2013). Methodology and application of one-way ANOVA. American Journal of Mechanical Engineering, 1(7), 256-261.

Rai, R. K., Singh, V. P., & Upadhyay, A. (2017). Soil analysis. In R. K. Rai, V.P. Singh, & A. Upadhyay (Eds.), Planning and evaluation of irrigation projects: Methods and implementation (pp. 505-523). Amsterdam, Netherlands: Elsevier, Inc.

Seifu, W., & Elias, E. (2018). Soil quality attributes and their role in sustainable agriculture: A review. International Journal of Plant & Soil Science, 26(3), 1-26.

Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang F. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology, 156, 997-1005.

Singh, M. C., Singh, J. P., Pandey, S. K., Mahay, D., & Shrivastva V. (2017). Factors affecting the performance of greenhouse cucumber cultivation review. International Journal of Current Microbiology and Applied Sciences, 6(10), 2304-2323.

Sinha, D., & Tandon, P. K. (2020). An overview of nitrogen, phosphorus, and potassium: Key players of nutrition process in plants. In K. Mishra, P. K. Tandon, & S. Srivastava (Eds.), Sustainable solutions for elemental deficiency and excess in crop plants (pp. 85-117). Singapore: Springer Nature Singapore Pte Ltd.

Spargo, J., Allen, T., & Kariuki S. (2013). Soil and plant nutrient testing laboratory: Interpreting your soil test results. Retrieved from https://ag.umass.edu/soil-plant-nutrient-testing-laboratory/fact-sheets/interpreting-your-soil-test-results.

Syafruddin., & Safrizal, H. D. (2013). Pengaruh konsentrasi dan waktu aplikasi em4 terhadap pertumbuhan dan produksi cabai (Capsicum annum L.) pada tanah entisol. Jurnal Agrista, 17(2), 71-77.

Uchida, R. (2000). Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. In J. A. Silva, & R. S. Uchida (Eds.), Plant nutrient management in Hawaii’s soils, approaches for tropical and subtropical agriculture (pp. 151). US: College of Tropical Agriculture and Human Resources, University of Hawaii.

Uthpala, T. G. G., Marapana, U., Lakmini, P. C., & Wettimuny, D. (2020). Nutritional bioactive compounds and health benefits of fresh and processed cucumber (Cucumis sativus L.). Sumerianz Journal of Biotechnology, 3(9), 75-82

Zhao, Y., Yan, C., Lu, S., Wang, P., Qiu, G. Y., & Li, R. (2019a). Estimation of chlorophyll content in intertidal mangrove leaves with different thicknesses using hyperspectral data. Ecological Indicators, 106(3), 1-13.

Zhao, Y., Zhang, M., Yang, W., Di, H. J., Ma, L., Liu, W., & Li, B. (2019b). Effects of microbial inoculants on phosphorus and potassium availability, bacterial community composition, and chili pepper growth in a calcareous soil: A greenhouse study. Journal of Soils and Sediments, 19(10), 3597–3607. doi: 10.1007/s11368-019-02319-1.




DOI: https://doi.org/10.15408/kauniyah.v1i1.37561 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120