Deteksi dan Kuantifikasi Cemaran Babi pada Sampel Olahan Daging Menggunakan Real-time PCR

Seagames Waluyo, Jekmal Malau, Muhareva Raekiansyah, Edwin Yulian, Imam Hardiman

Abstract


 Abstrak

Metode pengujian cemaran babi menjadi faktor penting dalam sertifikasi produk halal. Metode yang cepat dan robust diperlukan untuk deteksi dan kuantifikasi cemaran babi. Metode Real-time PCR atau dikenal dengan istilah quantitative PCR (qPCR) merupakan metode alternatif untuk deteksi dan kuantifikasi cemaran babi berdasarkan residu keberadaan DNAnya pada sampel olahan pangan. Metode ekstraksi DNA dan kit amplifikasi yang tahan terhadap inhibitor menjadi kunci keberhasilan penggunaan qPCR untuk pendeteksian dan kuantifikasi cemaran babi. Pendeteksian cemaran DNA dengan probe qPCR digunakan karena mempunyai kelebihan tahan terhadap inhibitor, cepat, spesifik, dan multipel target. Penelitian ini bertujuan untuk mendeteksi dan menguantifikasi cemaran DNA babi menggunakan metode ekstraksi DNA secara cepat dan qPCR. Tahapan penelitian ini adalah ekstraksi DNA, amplifikasi, deteksi, dan kuantifikasi DNA babi. Sampel berasal dari produk olahan pangan, seperti bakso, sosis, daging burger, siomay, kuah daging, dan daging isi roti. Hasil penelitian menunjukkan bahwa terdapat cemaran babi pada sampel bakso, daging burger, dan kuah bakso. Hasil yang didapatkan menunjukkan bakso memiliki persentase kontaminasi sejumlah 25%, sedangkan kuah daging sejumlah 12,5%. Hasil penelitian ini dapat direkomendasikan untuk laboratorium penguji makanan sebagai metode deteksi cemaran babi dalam produk pangan secara cepat dan akurat.

Abstract

Pork contamination testing method is an important factor in halal product certification. A fast and robust method is needed for the detection and quantification of pig contamination. Real-time PCR method or commonly known as quantitative PCR (qPCR) is an alternative method for the detection and quantification of pork contamination based on the pig’s DNA residual presence in processed food samples. DNA extraction method and inhibitor-resistant amplification kit are the keys of successful qPCR implementation for the detection and quantification of pig contamination. Detection of DNA contamination with qPCR probe is used because it has some advantages, such as resistant to inhibitors, fast, specific, and multiple targets. This research aimed to detect and quantify pig’s DNA contamination using rapid DNA extraction method and qPCR. The stages of this research were pig’s DNA extraction, amplification, detection, and quantification. The samples taken from processed food products, such as meatballs, sausage, burgers’ meat, dumplings, meat broth, and meat filled in the bread. The results showed that there was pork contamination in the samples of meatballs, burgers’ meat, and meat broth. The results showed that the meatballs had a contamination percentage of 25%, while the meat broth had a contamination percentage of 12.5%. The results of this study can be a recommendation for food testing laboratories as a method of detecting the pork contamination in food products quickly and accurately.


Keywords


Cemaran babi; Probe; Quantitative PCR; Pork contamination

Full Text:

PDF

References


Aminuddin, M. Z. (2016). Sertifikasi produk halal: Studi perbandingan Indonesia dan Thailand. SHAHIH : Journal of Islamicate Multidisciplinary, 1(1), 2527-8126. doi: 10.22515/shahih.v1i1.52.

Baihaqi, M., Rachmawati, Y., Rokhim, S., Munir, M., & Hamidah, L. (2019). Real time PCR assays for detection and quantification of porcine DNA in meat milling samples. 1st International Conference on Science and Technology (ICOST). 1-7. doi: 10.4108/eai.2-5-2019.2284634.

Bott, R. (2014). Scientific evidence that porcine meat (pork) is prohibited for human health. International European Conference on Interdisciplinary Scientific, 55(1), 67-75.

Cavin, C., Cottenet, G., Cooper, K. M., & Zbinden, P. (2018). Meat vulnerabilities to economic food adulteration require new analytical solutions. Chimia, 72(10), 697-703. doi: 10.2533/chimia.2018.697.

De Kock, R., Baselmans, M., Scharnhorst, V., & Deiman, B. (2020). Sensitive detection and quantification of sars-cov-2 by multiplex droplet digital RT-PCR. European Journal of Clinical Microbiology and Infectious Diseases, 40(4), 807-813. doi: 10.1007/s10096-020-04076-3.

Kim, M. J., & Kim, H. Y. (2019). A fast multiplex real-time pcr assay for simultaneous detection of pork, chicken, and beef in commercial processed meat products. LWT - Food Science and Technology, 114, 1-6. doi: 10.1016/j.lwt.2019.108390.

Kim, Y. S., Yu, H. K., Lee, B. Z., & Hong, K. W. (2018). Effect of DNA extraction methods on the detection of porcine ingredients in halal cosmetics using real-time PCR. Applied Biological Chemistry, 61(5), 549-555. doi: 10.1007/s13765-018-0389-x.

Laila-Liyana, M. N., Sahilah, A. M., Nur-Qistina, Z., Mohd-Khan, A., Aminah, A., & Abdul-Salam, B. (2018). Detection of porcine dna in cooked meatballs using polymerase chain reaction (PCR) assay. International Food Research Journal, 25(5), 1953-1958.

Mohamad, N. A., Mustafa, S., Mokhtar, N. F. K., & El Sheikha, A. F. (2018). Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules. Journal of the Science of Food and Agriculture, 98(12), 4570-4577. doi: 10.1002/jsfa.8985.

Mustaqimah, D. N., Septiani, T., & Roswiem, A. P. (2021). Deteksi DNA babi pada produk sosis menggunakan real time-polymerase chain reaction (RT-PCR). Indonesia Journal of Halal, 3(2), 106-111. doi: 10.14710/halal.v3i2.10130.

Osmundson, T. W., Eyre, C. A., Hayden, K. M., Dhillon, J., & Garbelotto, M. M. (2013). Back to basics: An evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples. Molecular Ecology Resources, 13(1), 66-74. doi: 10.1111/1755-0998.12031.

Qu, C., & Stewart, K. A. (2019). Evaluating monitoring options for conservation: comparing traditional and environmental DNA tools for a critically endangered mammal. The Science of Nature, 106(9), 1-9. doi: 10.1007/s00114-019-1605-1.

Raso, A., & Biassoni, R. (2014). Twenty years of qPCR: A mature technology? Methods in Molecular Biology, (1160), 1-3. doi: 10.1007/978-1-4939-0733-5_1.

Reijns, M. A. M., Thompson, L., Acosta, J. C., Black, H. A., Sanchez-Luque, F. J., Diamond, A., … Jackson, A. P. (2020). A sensitive and affordable multiplex RT-qPCR assay for SARS-CoV-2 detection. PLOS Biology, 18(12), 1-20. doi: 10.1371/journal.pbio.3001030.

Rupa, P., Schmied, J., & Wilkie, B. N. (2009). Porcine allergy and IgE. Veterinary Immunology and Immunopathology, 132(1), 41-45. doi: 10.1016/j.vetimm.2009.09.013.

Waluyo, S., Sustiprijatno., & Suharsono. (2013, June 27-28). Optimasi antibiotik higromisin sebagai penunjang transformasi genetik tembakau. Paper presented at Seminar Nasional Riset Pangan, Obat-Obatan dan Lingkungan untuk Kesehatan, IPB Convention Centre, Botani Square, Bogor, Jawa Barat, Indonesia. Retrieved from https://www.researchgate.net/publication/331674684_Optimasi_antibiotic_higromisin_sebagai_penunjang_transformasi_genetic_tembakau

Sentandreu, M. Á., & Sentandreu, E. (2014). Authenticity of meat products: Tools against fraud. Food Research International, 60, 19-29. doi: 10.1016/j.foodres.2014.03.030.

Septiani, T. (2021). Identification of rat meatballs in traditional market in area of Jakarta using real time - PCR. Indonesia Journal of Halal, 3(1), 94-99. doi: 10.14710/halal.v3i2.9244.

Sidstedt, M., Rådström, P., & Hedman, J. (2020). PCR inhibition in qPCR, dPCR and MPS—mechanisms and solutions. In Analytical and Bioanalytical Chemistry, 412(9), 1-9. doi: 10.1007/s00216-020-02490-2.

Sudjadi., Wardani, H. S., Sepminarti, T., & Rohman, A. (2016). Analysis of porcine gelatin DNA in a commercial capsule shell using real-time polymerase chain reaction for halal authentication. International Journal of Food Properties, 19(9), 2127-2134. doi: 10.1080/10942912.2015.1110164.

Tan, L. L., Ahmed, S. A., Ng, S. K., Citartan, M., Raabe, C. A., Rozhdestvensky, T. S., & Tang, T. H. (2020). Rapid detection of porcine DNA in processed food samples using a streamlined DNA extraction method combined with the SYBR Green real-time PCR assay. Food Chemistry, 309, 1-27. doi: 10.1016/j.foodchem.2019.125654.

Tanabe, S., Hase, M., Yano, T., Sato, M., Fujimura, T., & Akiyama, H. (2007). A real-time quantitative PCR detection method for pork, chicken, beef, mutton, and horseflesh in foods. Bioscience, Biotechnology, and Biochemistry, 71(12), 3131-3135. doi: 10.1271/bbb.70683.

Wang, C., Wang, X., Tang, Y., Zhang, J., Yu, S., Xu, J., & Bao, Z. (2009). A rapid and cheap protocol for preparation of PCR templates in peanut. Electronic Journal of Biotechnology, 12(2), 9-10. doi: 10.4067/S0717-34582009000200009.

Widayat, W., Agustini, W. T., Suzery, M., Al-Baarri, A. N., & Putri, S. R. (2019). Real time-polymerase chain reaction (RT-PCR) sebagai alat deteksi DNA babi dalam beberapa produk non-pangan. Indonesia Journal of Halal, 2(1), 26-33. doi: 10.14710/halal.v2i1.5361.

Zauli, D. A. G. (2019). PCR and infectious diseases, synthetic biology - new interdisciplinary science, IntechOpen, 1‒10. doi: 10.5772/intechopen.85630.

Zhang, Y., Wang, C., Han, M., Ye, J., Gao, Y., Liu, Z., … Zhang, Z. (2020). Discrimination of false negative results in RT-PCR detection of SARS-CoV-2 RNAs in clinical specimens by using an internal reference. Virologica Sinica, 35(6), 1-10. doi:10.1007/s12250-020-00273-8.




DOI: https://doi.org/10.15408/kauniyah.v16i1.20203 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120