Hubungan Karakter Morfofisiologi dan Hasil Panen Dua Varietas Padi Tercekam Salinitas Menggunakan Penambahan Hara Silika Padat
Abstract
Abstrak
Penggunaan varietas toleran dengan penambahan hara silika merupakan upaya untuk meningkatkan ketahanan padi terhadap cekaman salinitas sehingga dapat memperbaiki hasil panen. Penelitian bertujuan untuk mengkaji hubungan karakter morfofisiologi dengan hasil panen pada dua varietas padi tercekam salinitas dengan penambahan hara silika padat. Penelitian menggunakan Rancangan Acak Lengkap faktorial. Faktor pertama, yaitu padi varietas Dendang dan IPB 4S serta faktor kedua, yaitu dosis silika padat per kg tanah antara lain 300 mg, 450 mg, dan 600 mg. Tinggi padi varietas Dendang lebih rendah dibandingkan tinggi tanaman padi varietas IPB 4S. Namun, padi varietas Dendang memiliki jumlah anakan, bobot kering tajuk, jumlah malai per rumpun, persentase gabah isi, dan produktivitas lebih tinggi. Interaksi padi varietas Dendang dengan penambahan 300 mg dosis silika menghasilkan jumlah malai per rumpun dan produktivitas tertinggi. Jumlah anakan dan bobot kering tajuk berkorelasi positif terhadap jumlah malai per rumpun (R²= 0,85; R²= 0,81), persentase gabah isi (R²= 0,75; R²= 0,60), dan produktivitas (R²= 0,65; R²= 0,70). Padi varietas Dendang mampu tumbuh dan berproduksi lebih optimal pada kondisi salin dibandingkan padi varietas IPB 4S. Penambahan silika sebanyak 300 mg mampu memperbaiki beberapa karakter morfofisiologi dan hasil panen.
Abstract
The use of tolerant varieties with the addition of silica nutrients is an effort to increase rice resistance to saline conditions, thus improving the crop yields. The objective of the study was to examine the relationship between morphophysiological characters and crop yields of two rice varieties under salinity stress with the addition of solid silica nutrients. The study applied a completely randomized factorial design. The first factor was rice of Dendang and IPB 4S varieties, and the second factor was the dosage of silica per kg of soil, namely 300 mg, 450 mg, and 600 mg. In terms of plant height, Dendang variety was lower than IPB 4S, however Dendang produced higher number of tillers, canopy dry weight, number of panicles, percentage of filled grain, and productivity. Interaction between Dendang variety and the addition of 300 mg silica nutrients resulted in the highest number of panicles and productivity. The number of tillers and canopy dry weight had a positive correlation to number of panicles (R²= 0.85; R²= 0.81), to percentage of filled grain (R²= 0.75; R²= 0.60), and to productivity (R²= 0.65; R²= 0.70). The rice of Dendang variety was able to grow and optimally produce yield compared to IPB 4S under saline conditions. The addition of 300 mg solid silica nutrients was able to improve several morphophysiological characters and crop yield.
Keywords
Full Text:
PDFReferences
Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(18), 1-38. doi: 10.3390/agronomy7010018.
Adlian, A., Kurniasih, B., & Indradewa, D. (2020). Effect of saline irrigation method on the growth of rice (Oryza sativa L.). Ilmu Pertanian (Agricultural Science), 5(1), 19-24. doi: 10.22146/ipas.24892.
Amartani, K. (2019). Respon perkecambahan benih jagung (Zea mays L.) pada kondisi cekaman garam. AGROSAINSTEK: Jurnal Ilmu dan Teknologi Pertanian, 3(1), 9-14. doi: 10.33019/agrosainstek.v3i1.32.
Anshori, M. F., Purwoko, B. S., Dewi, I. S., Ardie, S. W., & Suwarno, W. B. (2019). Selection index based on multivariate analysis for selecting doubled-haploid rice lines in lowland saline prone area. Sabrao Journal of Breeding and Genetics, 51(2), 161-174.
Arini, N., Kurniasih, B., & Waluyo, S. (2019). Effect of salt pretreatment on the growth and yield of Oryza sativa L. (cv. Dendang) under saline condition. Ilmu Pertanian (Agricultural Science), 4(2), 65-70. doi: 10.22146/ipas.32146.
Çalişkan, B., & Çalişkan, A. C. (2017). Potassium nutrition in plants and its interactions with other nutrients in hydroponic culture. In IntechOpen, 1(2017), 9-21. doi: 10.5772/intechopen.71951.
Channa, G. S., Mahar, A. R., Rajpar, I., Memon, A. H., Saand, M. A., Mirbahar, A. A., … Sirohi, M. H. (2019). Effect of salinity on growth, yield and ion contents of rice ( Oryza sativa L.) genotypes. Inernational Journal of Biosciences, 14(5), 192-204. doi: 10.12692/ijb/14.5.192-204.
Currie, H. A., & Perry, C. C. (2007). Silica in plants: Biological, biochemical and chemical studies. Annals of Botany, 100(7), 1383-1389. doi: 10.1093/aob/mcm247.
Dewi, A. Y., Putra, E. T. S., & Trisnowati, S. (2014). Induksi ketahanan kekeringan delapan hibrida kelapa sawit (Elaeis guineensis Jacq.) dengan silika. Vegetalika, 3(3), 1-13. doi: 10.22146/veg.5154.
Dirhamsyah. (2006). Pengelolaan wilayah pesisir terintegrasi di Indonesia. Jurnal Oseana, 31(1), 21-26.
Dolo, J. S., Nchimbi-msolla, S., & Msaky, J. J. (2016). Salinity stress effects on some morpho- physiological traits of selected rice (Oryza sativa L.) genotypes. International Journal of Development and Sustainability, 5(2), 74-86.
Frasetya, B., Harisman, K., Sudrajat, D., & Subandi, M. (2019). Utilization of rice husk silicate extract to improve the productivity of paddy ciherang cultivar. Bulgarian Journal of Agricultural Science, 25(3), 499-505.
Hambali, A., & Lubis, I. (2015). Evaluasi produktivitas beberapa varietas padi. Buletin Agrohorti, 3(2), 137-145. doi: 10.29244/agrob.3.2.137-145.
Haq, T. U., Akhtar, J., Nawaz, S., & Ahmad, R. (2009). Morpho-physiological response of rice (Oryza Sativa L.) varieties to salinity stress. Pakistan Journal of Botany, 41(6), 2943-2956.
Harjanti, R. A., Tohari, T., & Utami, S. N. H. (2014). Pengaruh takaran pupuk nitrogen dan silika terhadap pertumbuhan awal (Saccharum officianarum L.) pada inceptisol. Vegetalika, 3(2), 35-44. doi: 10.22146/veg.5150.
Heidari, M. (2012). Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. African Journal of Biotechnology, 11(2), 379-384. doi: 10.5897/ajb11.2572.
Ikhsanti, A., Kurniasih, B., & Indradewa, D. (2018). Pengaruh aplikasi silika terhadap pertumbuhan dan hasil tanaman padi (Oryza sativa L.) pada kondisi salin. Vegetalika, 7(4), 1-11. doi: 10.22146/veg.41144.
Jalil, M., Sakdiah, H., Deviana, E., & Akbar, I. (2016). Pertumbuhan dan produksi beberapa varietas padi (Oryza sativa L.) pada berbagai tingkat salinitas. Jurnal Agrotek Lestari, 2(2), 63-74. doi: 10.35308/jal.v2i2.597.
Kurniawan, S. S., Putri, L. A. P., & Bangun, M. K. (2013). Adaptasi beberapa varietas padi (Oryza sativa L.) pada tanah salin. Jurnal Online Agroteknologi, 1(2), 249-262.
Mareza, E., Djafar, Z. R., Suwignyo, R. A., & Wijaya, A. (2014). The effect stubble cutting height on the vegetative and reproductive phase of rice ratoon in a tidal swamp. International Journal of Agriculture System, 2(1), 1-7. doi: 10.20956/ijas.v1i1.17.
Mondal, M. M. A., Puteh, A. B., Malek, M. A., & Rafii, M. Y. (2013). Salinity induced morpho-physiological characters and yield attributes in rice genotypes. Journal of Food, Agriculture and Environment, 11(2), 610-614.
Muflikhah, N., Kurniasih, B., & Tohari, T. (2018). Growth and yield of rice (Oryza sativa L.) under raised- and sunken-bed system as affected by saline irrigation in Baros, Bantul, Yogyakarta. Ilmu Pertanian (Agricultural Science), 3(2), 110-116. doi: 10.22146/ipas.32153.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(2008), 651-681. doi: 10.1146/annurev.arplant.59.032607.092911.
Nasrudin, N., & Rosmala, A. (2020). Analisis pertumbuhan padi lokal aksesi PH 1 menggunakan pernambahan pupuk silika padat pada kondisi salin. AGROTEKNIKA, 3(2), 75-84. doi: 10.32530/agroteknika.v3i2.71.
Nguyen, H. H., Maneepong, S., & Suraninpong, P. (2017). Effects of potassium, calcium, and magnesium ratios in soil on their uptake and fruit quality of Pummelo. Journal of Agricultural Science, 9(12), 110-121. doi: 10.5539/jas.v9n12p110.
Puspitasari, S. A., & Indradewa, D. (2019). The effects of silica on growth and yield of Chrysanthemum plants (Dendranthema sp.) cultivar sheena and snow white. Ilmu Pertanian (Agricultural Science), 4(3), 98-102. doi: 10.22146/ipas.46129.
Radanielson, A. M., Angeles, O., Li, T., Ismail, A. M., & Gaydon, D. S. (2018). Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Research, 220(August 2016), 46-56. doi: 10.1016/j.fcr.2017.05.001.
Sahebi, M., Hanafi, M. M., Akmar, A, S, N., Rafii, M. Y., Azizi, P., Tengoua, F. F., … Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International, 2015(396010), 1-16. doi: 10.1155/2015/396010.
Salt Farm Foundation. (2018). The four pillars of saline agriculture. Retrieved from https://www.salineagricultureworldwide.com/uploads/file_uploads/files/Four pillars of Saline Agriculture - Salt Farm Foundation 2018.pdf.
Saragih, R. I. K., & Wirnas, D. (2019). Studi keragaman galur F4 hasil persilangan padi varietas IPB 4S dengan Situ Patenggang. Buletin Agrohorti, 7(1), 38-46. doi: 10.29244/agrob.7.1.38-46.
Siahpoosh, M. R., & Ghamer, M. (2019). Morpho-physiological responses and nutrient profile of rice cultivars to salinity. Journal of Rice Research, 7(3), 1-6.
Yang, X., Wang, B., Chen, L., Li, P., & Cao, C. (2019). The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Scientific Reports, 9(3742), 1-12. doi: 10.1038/s41598-019-40161-0.
Zeng, L., Poss, J. A., Wilson, C., Draz, A.-S. E., Gregorio, G. B., & Grieve, C. M. (2003). Evaluation of salt tolerance in rice genotypes by physiological characters. Euphytica, 129(2003), 281-292. doi: 10.1023/A.
DOI: https://doi.org/10.15408/kauniyah.v15i2.19005 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â