Dampak Aplikasi Border Plant Pada Sistem Budi Daya Mentimun (Cucumis sativus L.) Terhadap Interaksi dengan Serangga Penyerbuk dan Kualitas Buah yang Dihasilkan

Fitria Nur Aisyah, Yeyet Setiawati, Ida Kinasih, Ramadhani Eka Putra

Abstract


Abstrak

Penelitian yang bertujuan untuk melihat dampak aplikasi border plant (bunga kenikir, Cosmos suphureus) pada proses penyerbukan pada tanaman produksi (dengan tanaman mentimun sebagai model) oleh serangga liar maupun serangga domestikasi telah dilakukan. Pada penelitian ini dilakukan pengamatan terhadap aktivitas dari serangga penyerbuk dalam bentuk jumlah kunjungan per bunga (Visitation Rate, (VR)) dan waktu yang dihabiskan pada bunga (Flower Handling Time, (FHT)) serta dampak dari aktivitas tersebut terhadap kualitas dari buah yang ditentukan berdasarkan panjang, diameter, dan bobot buah yang dihasilkan. Hasil pengamatan menunjukkan bahwa serangga penyerbuk yang mengunjungi bunga mentimun pada sistem border plant adalah Tetragonula laeviceps, Apis cerana, Xylocopa confusa, dan Xylocopa latipes sedangkan pada perlakuan non-border plant (kontrol) adalah Tetragonula laeviceps dan Apis cerana. Aktivitas serangga pada sistem border plant adalah VR dari T. laeviceps, A. cerana, X. confusa, dan X. latipes berturut-turut adalah 29,75%; 13%; 6,25%; dan 9,5% serta (2) FHT adalah 0,39; 12,09; 0,20; dan 0,19 detik. Sementara itu, nilai VR pada perlakuan non-border plant bagi A. cerana dan T. laeviceps adalah 13,5% dan 4% dengan nilai FHT sebesar 0,14 dan 0,92 detik. Kualitas terbaik buah mentimun terdapat pada kelompok perlakuan border plant dengan panjang buah 18,3 cm, diameter 36,9 cm, dan bobot 171,9 gram sedangkan kualitas buah terendah diperoleh pada perlakuan non-border plant dengan panjang buah 10,2 cm, diameter 29,2 cm dan bobot 77,6 g.

Abstract

This study was conducted to investigate the impact of using border plant (Cosmos suphureus) on the interaction between crop (cucumber, Cucumis sativus) and pollinating insects, either wild or domesticated. The observation was conducted on the activities of the pollinating insects in term of number of visitation per flower (Visitation Rate (VH)) and times spend in flower (Flower Handling Time (FHT)) and the quality of the harvested products (length, diameter, and weight). The pollinating insects found at area with application of border plant consisted of Tetragonula laeviceps, Apis cerana, Xylocopa confusa, and Xylocopa latipes, while insects found at area without border plant were Tetragonula laeviceps and Apis cerana. The insect activity of T. laeviceps, A. cerana, X. confusa, and X. latipes for observation of (1) VR were 29.75%, 13%, 6.25%, and 9.5%, respectively and (2) FHT were 0.39 s, 12.09 s, 0.20 s, and 0.19 s, respectively. On the other hand, VR of A. cerana and T. laeviceps at non-border treatment area were 13.5% and 4%, respectively, and the FHT were 0.14 s and 0.92 s, respectively. The highest quality of cucumber produced was found at area with border plant treatment with fruit length of 18.3 cm, diameter of 36.9 cm, and weight of 171.9 grams. Meanwhile, the lowest fruit quality was obtained in the non-border plant treatment with fruit length of 10.2 cm, diameter of 29.2 cm and weight of 77.6 grams


Keywords


Border plant; Kualitas buah; Mentimun; Non-border plant; Serangga penyerbuk; Border Plant; Cucumber; Fruit quality; Non-border plant; Pollinating insects

Full Text:

PDF

References


Agussalim, A., Agus, A., Umami, N., & Budisatria, I. G. S. (2018). The type of honeybees forages in district of Pakem Sleman and Nglipar Gunungkidul Yogyakarta. Buletin Peternakan, 42(1), 50-56. doi: 10.21059/buletinpeternak.v42i1.28294.

Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12. doi: 10.2478/v10102-009-0001-7.

Allifah A. N., Bahalwan, F., & Natsir, N. A. (2020). Keanekaragaman dan kelimpahan serangga polinator pada perkebunan mentimun (Cucumis sativus L) Desa Waiheru Ambon. Biosel: Biology Science and Education, 9(1), 26. doi: 10.33477/bs.v9i1.1314.

Amaya-Márquez, M., Hill, P. S. M., Barthell, J. F., Pham, L. L., Doty, D. R., & Wells, H. (2008). Learning and memory during foraging of the blue orchard bee, Osmia lignaria Say (Hymenoptera: Megachilidae). Journal of the Kansas Entomological Society, 81(4), 315-327. doi: 10.2317/JKES801.29.1.

Amaya-Márquez, M. (2009). Floral constancy in bees: A revision of theories and a comparison with other pollinators. Revista Colombiana de Entomologia, 35(2), 206-216.

Atmowidi, T., Prawasti, T. S., & Raffiudin, R. (2018). Flight activities and pollen load of three species of stingless bees (Apidae: Melliponinae). IOP Conference Series: Earth and Environmental Science, 197(1), 0-7. doi: 10.1088/1755-1315/197/1/012025.

Balachandran, C., Chandran, M. D. S., Vinay, S., Shrikant, N., & Ramachandra, T. V. (2017). Pollinator diversity and foraging dynamics on monsoon crop of cucurbits in a traditional landscape of South Indian west coast. Biotropia, 24(1), 16-27. doi: 10.11598/btb.2017.24.1.480.

Basari, N., Ramli, S. N., & Khairi, N. ‘Aina S. M. (2018). Food reward and distance influence the foraging pattern of stingless bee, Heterotrigona itama. Insects, 9(4). doi: 10.3390/insects9040138.

Bengtsson, J. (2015). Biological control as an ecosystem service: Partitioning contributions of nature and human inputs to yield. Ecological Entomology, 40(S1), 45-55. doi: 10.1111/een.12247.

Borghi, M., Perez de Souza, L., Yoshida, T., & Fernie, A. R. (2019). Flowers and climate change: A metabolic perspective. New Phytologist, 224(4), 1425-1441. doi: 10.1111/nph.16031.

Cardoza, Y. J., Harris, G. K., & Grozinger, C. M. (2012). Effects of soil quality enhancement on pollinator-plant interactions. Psyche (London), 2012. doi: 10.1155/2012/581458.

Chagnon, M., Kreutzweiser, D., Mitchell, E. A. D., Morrissey, C. A., Noome, D. A., & Van Der Sluijs, J. P. (2015). Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental Science and Pollution Research, 22(1), 119-134. doi: 10.1007/s11356-014-3277-x.

Chen, M., Zhao, X. Y., & Zuo, X. A. (2018). Pollinator activity and pollination success of Medicago sativa L. in a natural and a managed population. Ecology and Evolution, 8(17), 9007-9016. doi: 10.1002/ece3.4256.

Christmann, S., Aw-Hassan, A., Rajabov, T., Khamraev, A. S., & Tsivelikas, A. (2017). Farming with alternative pollinators increases yields and incomes of cucumber and sour cherry. Agronomy for Sustainable Development, 37(4). doi: 10.1007/s13593-017-0433-y.

Dorjay, N., Abrol, D. P., & Shankar, U. (2017). Insect visitors on cucumber and bittergourd flowers and impact on quantity of crop production by different pollination treatment. Journal of Apiculture, 32(2), 77-88. doi: 10.17519/apiculture.2017.06.32.2.77.

Eeraerts, M., Vanderhaegen, R., Smagghe, G., & Meeus, I. (2020). Pollination efficiency and foraging behaviour of honey bees and non-Apis bees to sweet cherry. Agricultural and Forest Entomology, 22(1), 75-82. doi: 10.1111/afe.12363.

Ekeke, C., Ogazie, C. A. & Agbagwa, I. O. (2018). Breeding biology and effect of pollinators on the fruit characteristics of cucumber (Cucumis sativus L.), Cucurbitaceae. NJB, 31(2), 1-17.

Fisher, B., Turner, R. K., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological Economics, 68(3), 643-653. doi: 10.1016/j.ecolecon.2008.09.014.

Foulis, E. S. J., & Goulson, D. (2014). Commercial bumble bees on soft fruit farms collect pollen mainly from wildflowers rather than the target crops. Journal of Apicultural Research, 53(3), 404-407. doi: 10.3896/IBRA.1.53.3.08.

Fowler, R. E., Rotheray, E. L., & Goulson, D. (2016). Floral abundance and resource quality influence pollinator choice. Insect Conservation and Diversity, 9(6), 481-494. doi: 10.1111/icad.12197.

Freitas, B. M., Filho, A. J. S. P., Andrade, P. B., Lemos, C. Q., Rocha, E. E. M., Pereira, N. O., … Sampaio, K. (2014). Forest remnants enhance wild pollinator visits to cashew flowers and mitigate pollination deficit in NE Brazil. Journal of Pollination Ecology, 12(March). doi: 10.26786/1920-7603(2014)10.

Garibaldi, L. A., Carvalheiro, L. G., Vaissière, B. E., Gemmill-herren, B., Hipólito, J., Freitas, B. M., … Blochtein, B. (2016). and Large Farms. Science, 351(6271), 388-391.

Griffiths-Lee, J., Nicholls, E., & Goulson, D. (2020). Companion planting to attract pollinators increases the yield and quality of strawberry fruit in gardens and allotments. Ecological Entomology, 45(5), 1025-1034. doi: 10.1111/een.12880.

Hasan, P. A., Atmowidi, T., & Kahono, S. (2017). Keanekaragaman, perilaku kunjungan, dan efektivitas serangga penyerbuk pada tanaman mentimun (Cucumis sativus Linn.). Jurnal Entomologi Indonesia, 14(1), 1-9. doi: 10.5994/jei.14.1.1.

Hashifah, F. N., Indraswari, S. A. G. M., & Hidayat, S. R. C. (2020). Visiting frequency of bees in Cucumis sativus (Cucurbitaceae) Plants. AIP Conference Proceedings, 2260(September), 5-9. doi: 10.1063/5.0016375.

Hidayatullah, A. (2013). Faktor-faktor yang mempengaruhi produksi ketimun di Kabupaten Hulu Sungai Tengah. Ziraa’ah, 37(2), 33-39. doi: 10.31602/zmip.v37i2.35.

Hodgkiss, D., Brown, M. J. F., & Fountain, M. T. (2019). The effect of within-crop floral resources on pollination, aphid control and fruit quality in commercial strawberry. Agriculture, Ecosystems and Environment, 275(June 2018), 112-122. doi: 10.1016/j.agee.2019.02.006.

Hossain, M., Yeasmin, F., Rahman, M., Akhtar, S., & Hasnat, M. (2018). Role of insect visits on cucumber (Cucumis sativus L.) yield. Journal of Biodiversity Conservation and Bioresource Management, 4(2), 81-88. doi: 10.3329/jbcbm.v4i2.39854.

Kahono, S., Lupiyaningdyah, P., Erniwati., & Nugroho, H. (2012). Potensi dan pemanfaatan serangga penyerbuk untuk meningkatkan produksi kelapa sawit di perkebunan kelapa sawit Desa Api-api, Kecamatan Waru, Kabupaten Penajam Paser Utara, Kalimantan Timur. Zoo Indonesia, 21(2), 23-34.

Karenina, T., Herlinda, S., Irsan, C., & Pujiastuti, Y. (2020). Arboreal entomophagous arthropods of rice insect pests inhabiting adaptive vegetables and refugia in freshwater swamps of South Sumatra. Agrivita, 42(2), 214-228. doi:10.17503/agrivita.v0i0.2283.

Klein, A. M., Steffan-Dewenter, I., & Tscharntke, T. (2003). Fruit set of highland coffee increases with the diversity of pollinating bees. Proceedings of the Royal Society B: Biological Sciences, 270(1518), 955-961. doi: 10.1098/rspb.2002.2306.

Klumpers, S. G. T., Stang, M., & Klinkhamer, P. G. L. (2019). Foraging efficiency and size matching in a plant-pollinator community: The importance of sugar content and tongue length. Ecology Letters, 22(3), 469-479. doi: 10.1111/ele.13204.

Laverty, T. M., & Plowright, R. C. (1988). Flower handling by bumblebees: A comparison of specialists and generalists. Animal Behaviour, 36(3), 733-740. doi: 10.1016/S0003-3472(88)80156-8.

Leonhardt, S. D., Dworschak, K., Eltz, T., & Bluthgen, N. (2007). Original article foraging loads of stingless bees and utilisation of stored nectar for pollen harvesting. Apidologie, 38, 125-135. doi: 10.1051/apido.

Lizmah, S. F., Buchori, D., Pudjianto, P., & Rizali, A. (2019). Kompleksitas lanskap pertanian dan pengaruhnya terhadap keanekaragaman Hymenoptera parasitika. Jurnal Entomologi Indonesia, 15(3), 124. doi: 10.5994/jei.15.3.124.

Marcelis, L. F. M., & Hofman‐Eijer, L. R. B. (1993). Effect of temperature on the growth of individual cucumber fruits. Physiologia Plantarum, 87(3), 321-328. doi: 10.1111/j.1399-3054.1993.tb01737.x.

Mkenda, P. A., Ndakidemi, P. A., Mbega, E., Stevenson, P. C., Arnold, S. E. J., Gurr, G. M., & Belmain, S. R. (2019). Multiple ecosystem services from field margin vegetation for ecological sustainability in agriculture: Scientific evidence and knowledge gaps. PeerJ, 2019(11), 1-33. doi: 10.7717/peerj.8091.

Montoya, J. E., Arnold, M. A., Rangel, J., Stein, L. R., & Palma, M. A. (2020). Pollinator-attracting companion plantings increase crop yield of cucumbers and habanero peppers. HortScience, 55(2), 164-169. doi: 10.21273/HORTSCI14468-19.

Motzke, I., Tscharntke, T., Wanger, T. C., & Klein, A. M. (2015). Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens. Journal of Applied Ecology, 52(1), 261-269. doi: 10.1111/1365-2664.12357.

Murúa, M. (2020). Different pollinators’ functional traits can explain pollen load in two solitary oil-collecting bees. Insects, 11(10), 1-10. doi: 10.3390/insects11100685.

Nicholson, C. C., Ricketts, T. H., Koh, I., Smith, H. G., Lonsdorf, E. V., & Olsson, O. (2019). Flowering resources distract pollinators from crops: Model predictions from landscape simulations. Journal of Applied Ecology, 56(3), 618-628. doi: 10.1111/1365-2664.13333.

Nielsen, A., Reitan, T., Rinvoll, A. W., & Brysting, A. K. (2017). Effects of competition and climate on a crop pollinator community. Agriculture, Ecosystems and Environment, 246(December 2016), 253-260. doi: 10.1016/j.agee.2017.06.006.

Okumura, M., Inoue, S-i, Kuwata, K., & Kinoshita, T. (2016). Photosynthesis activates plasma membrane H+-ATPase via sugar accumulation. Plant Physiology, 171(1), 580-589. doi: 10.1104/pp.16.00355.

Papadopoulos, A. P., & Hao, X. (2001). Effects of day and night air temperature in early season on growth, productivity and energy use of spring tomato. Canadian Journal of Plant Science, 81(2), 303-311. doi: 10.4141/P00-064.

Papiorek, S., Junker, R. R., Alves-dos-Santos, I., Melo, G. A. R., Amaral-Neto, L. P., Sazima, M., … Lunau, K. (2016). Bees, birds, and yellow flowers: Pollinator-dependent convergent evolution of UV patterns. Plant Biology, 18(1), 46-55. doi: 10.1111/plb.12322.

Peng, Y-B, Li, Y-Q., Hao, Y-J., Xu, Z-H., & Bai, S-N. (2004). Nectar production and transportation in the nectaries of the female Cucumis sativus L. flower during anthesis. Protoplasma, 224(1-2), 71-78. doi: 10.1007/s00709-004-0051-9.

Phillips, B. B., Shaw, R. F., Holland, M. J., Fry, E. L., Bardgett, R. D., Bullock, J. M., & Osborne, J. L. (2018). Drought reduces floral resources for pollinators. Global Change Biology, 24(7), 3226-3235. doi: 10.1111/gcb.14130.

Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability, 7(2), 229-252. doi: 10.1007/s10668-005-7314-2.

Pribadi, D. U., Purnawati, A., & Rahmadhini, N. (2020). Penerapan sistem pertanaman refugia sebagai mikrohabitat musuh alami pada tanaman padi. Jurnal SOLMA, 9(1), 221-230. doi: 10.29405/solma.v9i1.3108.

Putra, R. E., Subagio, J., Kinasih, I., Permana, A. D., & Rosmiati, M. (2017). Pola kunjungan serangga liar dan efek penambahan koloni Trigona (Tetragonula) laeviceps Smith pada penyerbukan kabocha (Cucurbita maxima). Jurnal Entomologi Indonesia, 14(2), 69-79. doi: 10.5994/jei.14.2.69.

Pyke, G. H., Kalman, J. R. M., Bordin, D. M., Blanes, L., & Doble, P. A. (2020). Patterns of floral nectar standing crops allow plants to manipulate their pollinators. Scientific Reports, 10(1), 1-10. doi: 10.1038/s41598-020-58102-7.

Rasyid, E. A., Hendarto, K., Ginting, Y. C., & Edy, A. (2020). Pengaruh dosis pupuk kandang ayam dan pupuk hayati terhadap pertumbuhan dan produksi mentimun (Cucumis sativus L.). Jurnal Agrotek Tropika, 8(1), 87. doi: 10.23960/jat.v8i1.3687.

Real, L. A. (1981). Uncertainty and pollinator-plant interactions : The foraging behavior of bees and wasps on artificial flowers. Ecology, 62(1), 20-26.

Sabatier, R., Meyer, K., Wiegand, K., & Clough, Y. (2013). Non-linear effects of pesticide application on biodiversity-driven ecosystem services and disservices in a cacao agroecosystem: A modeling study. Basic and Applied Ecology, 14(2), 115-125. doi: 10.1016/j.baae.2012.12.006.

Sakir, I. M., & Desinta, D. (2019). Pemanfaatan refugia dalam meningkatkan produksi tanaman padi berbasis kearifan lokal. Jurnal Lahan Suboptimal, 7(1), 97-105. doi: 10.33230/jlso.7.1.2018.367.

Sawe, T., Nielsen, A., & Eldegard, K. (2020). Crop pollination in small-scale agriculture in Tanzania: Household dependence, awareness and conservation. Sustainability (Switzerland), 12(6), 1-13. doi: 10.3390/su12062228.

Scaven, V. L., & Rafferty, N. E. (2013). Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Current Zoology, 59(3), 418-426. doi: 10.1093/czoolo/59.3.418.

Shah, I., Shah, M., Khan, A., & Usman, A. (2015). Response of insect pollinators to different cucumber, Cucumis sativus L. (Cucurbitales: Cucurbitaceae) varieties and their impact on yield. Journal of Entomology and Zoology Studies, 3(5), 374-378.

Susilawati, S., Buchori, D., Rizali, A., & Pudjianto, P. (2018). Pengaruh keberadaan habitat alami terhadap keanekaragaman dan kelimpahan serangga pengunjung bunga mentimun. Jurnal Entomologi Indonesia, 14(3), 152. doi: 10.5994/jei.14.3.152.

Swibawa, I. G., Susilo, F. X., Murti, I., & Ristiyani, E. (2003). Serangan Dacus cucurbitae (Diptera: Trypetidae) pada buah mentimun dan pare yang dibungkus pada saat pentil. Jurnal Hama dan Penyakit Tumbuhan Tropika, 3(2), 43-46. doi: 10.23960/j.hptt.2343-46.

Veits, M., Khait, I., Obolski, U., Zinger, E., Boonman, A., Goldshtein, A., … Hadany, L. (2019). Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecology Letters, 22(9), 1483-1492. doi: 10.1111/ele.13331.

Vidal, M. D. G., De Jong, D., Wien, H. C., & Morse, R. A. (2006). Nectar and pollen production in pumpkin (Cucurbita pepo L.). Revista Brasileira de Botanica, 29(2), 267-273. doi: 10.1590/S0100-84042006000200008.

Waser, N. M., & Price, M. V. (2016). Drought, pollen and nectar availability, and pollination success. Ecology, 97(6), 1400-1409. doi: 10.1890/15-1423.1.

Wells, H., Hill, P. S., & Wells, P. H. (1992). Nectarivore foraging ecology: Rewards differing in sugar types. Ecological Entomology, 17(3), 280-288. doi: 10.1111/j.1365-2311.1992.tb01059.x

Wijaya, S., Basuki, N., & Purnamaningsih, S. L. (2015). Pengaruh waktu penyerbukan dan proporsi bunga betina dengan bunga jantan terhadap hasil dan kualitas benih mentimun (Cucumis sativus L.) hibrida. Jurnal Produksi Tanaman, 3(8), 615-622.

Wulandari, A. P., Atmowidi, T., & Kahono, D. S. (2017). Peranan lebah Trigona laeviceps (Hymenoptera: Apidae) dalam produksi biji kailan (Brassica oleracea var. alboglabra). Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 45(2), 196. doi: 10.24831/jai.v45i2.13236.

Yusoff, N. S. M., Soh, N. C., Rafdi, H. H. M., Lob, S., Idris, N. I. M., & Mohamed, J. (2021). Integrated management in boosting up Capsicum annuum L. production using integrated farming and biopesticide. Asian Journal of Plant Sciences, 20(2), 239-245. doi: 10.3923/ajps.2021.239.245.




DOI: https://doi.org/10.15408/kauniyah.v15i2.18840 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120