Identifikasi dan Analisis Filogentik Kerang Kima (Genus Tridacna) dari Pulau Kur Menggunakan DNA Barcoding

Teddy Triandiza, Agus Kusnadi, Hawis Madduppa, Neviaty P Zamani, Udhi E Hernawan, Rosmi N Pesillette, Abdul Kadir Yamko, Nurlita P Anggraini, Fildzah Z Hulwani, Ichtineza H Hardono, Risnita Tri Utami

Abstract


Abstrak

Peran penting kerang Kima secara ekologis sebagai salah satu spesies kunci dalam ekosistem terumbu karang menyebabkan biota laut ini mengalami tekanan antropogenik di sebagian besar wilayah di Indo-Pasifik, termasuk Indonesia. Penelitian ini bertujuan untuk mengidentifikasi spesies Kima genus Tridacna asal Pulau Kur menggunakan markea gen COI dan menganalisis hubungan filogenetiknya. Sampel jaringan Kima diekstrak menggunakan kit ekstraksi komersial. Primer universal (LCO1490; HCO2198) dan primer spesifik Kima (LCO: 5’-GGG TGA TAA TTC GAA CAG AA-3’; RCO: 5’-TAG TTA AAG CCC CAG CTA AA-3’) digunakan untuk mengamplifikasi DNA target. Analisis data dilakukan terhadap 26 sekuen Kima asal Pulau Kur dengan panjang fragmen 479 bp menggunakan software MEGA6 meliputi analisis jarak genetik dan pohon filogenetik. Hasil analisis homologi menggunakan BLASTn mendapatkan empat jenis Kima, yaitu Tridacna maxima, T. crocea, T. noae, dan T. squamosa dengan similaritas 99–100%. Hasil penelitian menunjukkan bahwa jarak genetik dalam spesies sangat rendah berkisar 0,0000–0,0103 sedangkan jarak genetik antar spesies berkisar antara 0,0112–0,1729. Hasil konstruksi pohon filogenetik kerang Kima menunjukkan adanya dua klad utama yang kohesif dan jelas terpisah, yaitu kelompok Tridacna yang monofiletik dan Hippopus hippopus. Berdasarkan hasil penelitian, teknik DNA Barcoding sangat efektif untuk identifikasi dan mengkonfirmasi fenomena cryptic spesies.

Abstract

The role of the giant clam as the key and ecologically important species in coral reef ecosystem has led them to experience anthropogenic pressure in the most of Indo-pacific region including Indonesia. This research aimed to identify the species of giant clam Tridacna from Kur Island, Southeast Maluku by using COI gene marker and to analyze their phylogenetic relationship. The tissue sample of giant clam was extracted with a commercial extraction kit. Universal primer (LCO1490; HCO2198) and specific primer for giant clam (LCO: 5’-GGG TGA TAA TTC GAA CAG AA-3’; RCO: 5’-TAG TT AAG CCC CAG CTA AA-3’) was used to amplify DNA target. Twenty-six sequences from Kur Island with 479 bp fragment length were analyzed by using MEGA6 software. Homological analysis on BLASTn found four species i.e Tridacna maxima, T. crocea, T. noae, and T. squamosa with 99100% similarity. The result also showed that genetic distance value intraspecies was very low ranging from 0.000 to 0.0105, while genetic distance inter-species ranged from 0.0112 to 0.1729. Reconstruction of phylogenetic tree of giant clam revealed two main group that cohesive and clearly separated i.e Tridacna group which monophyletic and Hippopus hippopuxs. Based on the result, the DNA barcoding technique was effective for identification and confirmation of the occurrence of cryptic species phenomenon.


Keywords


Antropogenik; Filogenetik; Kerang Kima; Pulau Kur; Anthropogenic; COI; Giant clam; Kur Island; Phylogenetic

Full Text:

PDF

References


Aline, T. (2008). Dissolution of dead corals by euendolithic microorganisms across The Northern Great Barrier Reef (Australia). Microbial Ecology, 55(4), 569-580. doi:10.1007/s00248-007-9302-6.

Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., … Berta, A. (2012). The magnitude of global marine species diversity. Current Biology, 22(23), 2189-2202. doi: 10.1016/j.cub.2012.09.036.

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winkler, K., … Das, I. (2006). Cryptic species as a window on diversity and conservation. Ecology and Evolution, 22(3), 148-155. doi: 10.1016/j.tree.2006.11.004.

Bin Othman, A. S., Goh, G. H. S., & Todd, P. A. (2010). The distribution and status of giant clams (Family Tridacnidae), a short review. The Raffles Bulletin of Zoology, 58(1), 103-111.

Borsa, P., Fauvelot, C., Tiavouane, J., Grulois, D., Wabnitz, C., Naguit, M.R.A., & Andrefouet, S. (2015). Distribution of Noah’s giant clam, Tridacna noae. Marine Biodiversity, 45, 339-344. doi: 10.1007/s12526-014-0265-9.

Cabaitan, P. C., Gomez, E. D., & Alino, P. M. (2008). Effects of coral transplantation and giant clam restocking on the structure of fish communities on degraded patch reefs. Journal of Experimental Marine Biology and Ecology, 357(1), 85-98. doi: 10.1016/j.jembe.2008.01.001.

Calumpong, H. P. (1992). The giant clam: An ocean culture manual. Canberra (AU): ACIAR Monograph 16.

Copland, J. W., & Lucas, J. S. (1988). Giant clams in Asia and the Pacific. Canberra (AU): ACIAR Monograph 9.

Eliata, A., Zahida, F., Wibowo, N. J., & Panggabean, L. M. G. (2003). Abundance of giant clam in coral reef ecosystem at Pari Island: A population comparison of 2003's to 1984's data. Biota, 8(3), 149-152. doi: 10.24002/biota.v8i3.2859.

Findra, M. N., Setyobudiandi, I., Butet, N. A., & Solihin, D. D. (2017). Genetic profile assessment of giant clam genus Tridacna as a basis for resource management at Wakatobi National Park Waters. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 22(2), 67-74. doi: 10.14710/ik.ijms.22.2.67-74.

Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit i from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-299.

Hajbabaei, M., Singer, G. A. C., Hebert, P. D. N., & Hickey, D. A. (2007). DNA barcoding: How it complements taxonomy, molecular phylogenetics, and population genetics. TRENDS in Genetics, 23(4), 167-172. doi: 10.1016/j.tig. 2007.02.001.

Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceding of Royal Society B, 270(1512), 313-321. doi: 10.1098/rspb.2002.2218.

Hernawan, U. E. (2012). Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae). Biodiversitas, 13(3), 118-123. doi: 10.13057/biodiv/d130303.

Keyse, J., Treml, E. A., Huelsken, T., Barber, P. H., DeBoer, T., Kochzius, M., … Riginos, C. (2018). Historical divergences associated with intermittent land bridges overshadow isolation by larval dispersal in co-distributed species of Tridacna giant clams. Journal of Biogeography, 45(4), 848-858. doi:10.1111/jbi.13163.

Knop, D. (1996). Giant clams, a comprehensive guide to the identification and care of Tridacnid clams. Ettlingen (PR): Dahne Verlag.

Kochzius, M., & Nuryanto, A. (2008). Strong genetic population structure in the boring giant clam, Tridacna crocea, across the Indo-Malay Archipelago: Implications related to evolutionary processes and connectivity. Molecular Ecology, 17(17), 3775-3787. doi:10.1111/j.1365-294X.2008.03803.x.

Kombong, C. B. S., & Arisuryanti, T. (2018). Komposisi nukleotida sekuen gen mitokondria 16S dan coi ikan gabus (Channa striata Bloch,1793) dari Danau Sentani, Jayapura, Papua. Jurnal Perikanan Universitas Gadjah Mada, 20(2), 57-62. doi: 10.22146/jfs.35551.

Kusnadi, A., Triandiza T., & Hernawan, U. E. (2008). The inventory of mollusc species and its potent on seagrass bed in Kei Kecil Islands, Southeast Moluccas. Biodiversitas, 9(1), 30-34. doi: 10.13057/biodiv/d090108.

Larson, C. (2016). Shell trade pushes giant clams to the brink. Science, 351(6271), 323-324. doi: 10.1126/science.351.6271.323

Liu, J., Cui, D., Wang, H., Chen, J., Liu, H., & Zhang, H. (2020). Extensive cryptic diversity of giant clams (Cardiidae: Tridacninae) revealed by DNA-sequence-based species delimitation approaches with new data from Hainan Island, South China Sea. Journal of Molluscan Studies, 86(1), 56-53. doi:10.1093/mollus/eyz033

Lizano, A. M., & Santos, M. D. (2014). Updates on the status of giant clams Tridacna spp. and Hippopus hippopus in the Philippines using mitochondrial co1 and 16S rRNA genes. Philippine Science Letters, 7(1), 187-200.

Matsumoto, M., & Hayami, I. (2001). Title molecular phylogenetics and taxonomic characters of the Anadarinae. Fossils, 69, 25-34.

Mies, M., Dor, P., Güth, A. Z., & Sumida, P. Y. G. (2017). Production in giant clam aquaculture: Trends and challenges. Reviews in Fisheries Science & Aquaculture 25(4), 1-1.1 doi: 10.1080/23308249.2017.1285864.

Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106(949), 283-293. doi:10.1086/282771

Neo, M. L., Eckman, W., Vicentuan, K., Teo, S.L.M., & Todd PA. (2015). The ecological significance of giant clams in coral reef ecosystems. Biological Conservation, 181, 111-123. doi: 10.1016/j.biocon.2014.11.004.

Neo, M. L., Wabnitz, C. C. C., Braley, R. D., Heslinga, G. A., Fauvelot, C., Wynsberghe, S. V., … Todd, P. A. (2017). Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. Oceanography and Marine Biology: An Annual Review, 55, 87-388.

Neo, M. L., Liu, L. L., Huang, D., & Soong, K. (2018) Thriving populations with low genetic diversity in giant clam species, Tridacna maxima and Tridacna noae, at Dongsha Atoll, South China Sea. Regional Studies in Marine Science, 24, 278-28. doi: 10.1016/j.rsma.2018.09.001.

Nontji, A. (1993). Laut nusantara. Jakarta: Djambatan.

Nijman, V., Spaan, D., & Nekaris, K. A. I. (2015). Large scale trade in legally protected marine mollusc shells from Java and Bali, Indonesia. Plos ONE 10(12), e0140593. doi: 10.1371/journal.pone.0140593.

Nuryanto, A., Duryadi, D., Soedharma, D., & Bloom, D. (2007). Molecular phylogeny of giant clams based on mitochondrial DNA cytochrome c oxidase I gene. HAYATI Journal of Biosciences, 14(4), 162-166. doi:10.4308/hjb.14.4.162.

Othmen, A. B., Abhary, M., Deli, T., Ouanes, Z., Alhuwaiti, N., Dimassi, N., & Mansour, L. (2020). Lack of mitochondrial genetic structure in the endangered giant clam populations of Tridacna maxima (Bivalvia: Cardiidae: Tridacninae) across the Saudi Arabian coast. Acta Oceanologica Sinica, 39(2), 28-37. doi: 10.1007/s13131-020-1547-7.

Su, Y., Hung, J. H., Kubo, H., & Liu, L.-L. (2014). Tridacna noae (Röding, 1798) - a valid giant clam species separated from T. maxima (Röding, 1798) by morphological and genetic data. Raffles Bulletin of Zoology, 62, 124-135.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. DOI: 10.1093/molbev/mst197.

Triandiza, T., Zamani, N. P., Madduppa, H., & Hernawan, U.E. (2019). Distribution and abundance of the giant clams (Cardiidae: Bivalvia) in Kei Islands, Maluku, Indonesia. Biodiversitas, 20(3), 884-892. doi: 10.13057/biodiv/d200337.

Vicentuan-Cabaitan, K., Neo, M. L., Eckman, W., Teo, S. L. M., & Todd, P. A. (2014). Giant clam shells host a multitude of epibionts. Bulletin of Marine Science, 90(3), 795-796. doi: 10.5343/bms.2014.1010.

Wabnitz, C., Taylor, M., Green, E., & Razak, T. (2003). From ocean to aquarium: The global trade in marine ornamental species. Cambridge (UK): UNEP-WCMC.

Wyrtki, K. (1961). Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959-1961 volume 2. La Jolla: University of California, Scripps Institution of Oceanography.




DOI: https://doi.org/10.15408/kauniyah.v15i1.17631 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120